Question Number 37018 by behi83417@gmail.com last updated on 08/Jun/18
Commented by math khazana by abdo last updated on 08/Jun/18
$$\left.\mathrm{1}\right)\:{let}\:{I}\:=\:\int\:\:\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{1}+{x}}{dx}\:{changement}\:{x}={sht}\:{give} \\ $$$${I}\:=\:\int\:\:\:\:\frac{{ch}\left({t}\right)}{\mathrm{1}+{sh}\left({t}\right)}{ch}\left({t}\right){dt}=\:\int\:\:\:\frac{{ch}^{\mathrm{2}} \left({t}\right){dt}}{\mathrm{1}+{sh}\left({t}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\:\:\frac{\mathrm{1}+{ch}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{sh}\left({t}\right)}{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\:\frac{\mathrm{1}\:+\frac{{e}^{\mathrm{2}{t}} \:+{e}^{−\mathrm{2}{t}} }{\mathrm{2}}}{\mathrm{1}+\frac{{e}^{{t}} \:−{e}^{−{t}} }{\mathrm{2}}}{dt} \\ $$$$\mathrm{2}{I}\:\:=\:\:\int\:\:\:\frac{\mathrm{2}\:+{e}^{\mathrm{2}{t}} \:+{e}^{−\mathrm{2}{t}} }{\mathrm{2}\:+{e}^{{t}} \:−{e}^{−{t}} }{dt}\: \\ $$$$=_{{e}^{{t}} ={u}} \:\:\:\:\int\:\:\:\:\frac{\mathrm{2}\:\:+{u}^{\mathrm{2}} \:+\frac{\mathrm{1}}{{u}^{\mathrm{2}} }}{\mathrm{2}\:+{u}\:−\frac{\mathrm{1}}{{u}}}\:{du}\:=\int\:\:\:\:\frac{\mathrm{2}{u}^{\mathrm{2}} \:+{u}^{\mathrm{4}} \:+\mathrm{1}}{\mathrm{2}{u}\:+{u}^{\mathrm{2}} \:−\mathrm{1}}\frac{\mathrm{1}}{{u}}{du} \\ $$$$=\int\:\:\:\:\frac{{u}^{\mathrm{4}} \:+\mathrm{2}{u}^{\mathrm{2}} \:+\mathrm{1}}{{u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} \:−{u}}{du} \\ $$$$=\:\int\:\:\:\frac{{u}\left({u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} −{u}\right)\:−\mathrm{2}{u}^{\mathrm{3}} \:+{u}^{\mathrm{2}} \:+\mathrm{2}{u}^{\mathrm{2}} \:+\mathrm{1}}{{u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} \:−{u}}\:{du} \\ $$$$=\:\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+\int\:\:\:\frac{−\mathrm{2}{u}^{\mathrm{3}} \:+\mathrm{3}{u}^{\mathrm{2}} \:+\mathrm{1}}{{u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} \:−{u}}{du} \\ $$$$=\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:+\int\:\:\:\frac{−\mathrm{2}\left(\:{u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} \:−{u}\right)\:+\mathrm{4}{u}^{\mathrm{2}} \:−\mathrm{2}{u}\:+\mathrm{3}{u}^{\mathrm{2}} \:+\mathrm{1}}{{u}^{\mathrm{3}} \:+\mathrm{2}{u}^{\mathrm{2}} \:−{u}}{du} \\ $$$$=\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\:−\mathrm{2}{u}\:\:+\int\:\:\:\:\frac{\mathrm{7}{u}^{\mathrm{2}} \:−\mathrm{2}{u}\:+\mathrm{1}}{{u}\left({u}^{\mathrm{2}} \:+\mathrm{2}{u}−\mathrm{1}\right)}{du}\:{let}?{decompose} \\ $$$${F}\left({u}\right)=\:\frac{\mathrm{7}{u}^{\mathrm{2}} −\mathrm{2}{u}\:+\mathrm{1}}{{u}\left({u}^{\mathrm{2}} \:+\mathrm{2}{u}−\mathrm{1}\right)}\:{roots}\:{of}\:{u}^{\mathrm{2}} \:+\mathrm{2}{u}−\mathrm{1} \\ $$$$\Delta^{'} \:=\:\mathrm{2}\:\Rightarrow\:{u}_{\mathrm{1}} =−\mathrm{1}+\sqrt{\mathrm{2}}\:\:{and}\:{u}_{\mathrm{2}} =−\mathrm{1}−\sqrt{\mathrm{2}} \\ $$$${F}\left({u}\right)\:=\:\frac{\mathrm{7}{u}^{\mathrm{2}} \:−\mathrm{2}{u}\:+\mathrm{1}}{{u}\left({u}−{u}_{\mathrm{1}} \right)\left({u}−{u}_{\mathrm{2}} \right)}\:=\:\frac{{a}}{{u}}\:\:+\frac{{b}}{{u}−{u}_{\mathrm{1}} }\:+\frac{{c}}{{u}−{u}_{\mathrm{2}} } \\ $$$${its}\:{simple}\:{to}\:{find}\:{a}\:,{b}\:{and}\:{c}\:{so} \\ $$$$\int\:{F}\left({u}\right){du}\:={aln}\mid{u}\mid\:+{bln}\mid{u}−{u}_{\mathrm{1}} \mid\:+{cln}\mid{u}−{u}_{\mathrm{2}} \mid\:+{C} \\ $$$$={at}\:+{b}\:{ln}\mid\:{e}^{{t}} \:−{u}_{\mathrm{1}} \mid\:+{c}\:{ln}\mid\:{e}^{{t}} \:−{u}_{\mathrm{2}} \mid\:+{C} \\ $$$$={aln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)\:+{bln}\mid\:{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−{u}_{\mathrm{1}} \mid \\ $$$$+{c}\:{ln}\mid\:{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−{u}_{\mathrm{2}} \mid\:+{C}\:=\:\mathrm{2}{I}\:\Rightarrow \\ $$$${I}\:=\frac{{a}}{\mathrm{2}}{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:+\frac{{b}}{\mathrm{2}}{ln}\mid{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−{u}_{\mathrm{1}} \mid \\ $$$$+\frac{{c}}{\mathrm{2}}{ln}\mid{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−{u}_{\mathrm{2}} \mid\:+{C}\:. \\ $$
Commented by behi83417@gmail.com last updated on 08/Jun/18
$$\int\:\frac{\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}{\mathrm{1}+\boldsymbol{{x}}}\boldsymbol{{dx}}= \\ $$$$\sqrt{\mathrm{2}}\boldsymbol{{ln}}\left(\frac{\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }−\boldsymbol{{x}}−\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }−\boldsymbol{{x}}+\sqrt{\mathrm{2}}−\mathrm{1}}\right)+\boldsymbol{{ln}}\left(\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }−\boldsymbol{{x}}\right)+\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }+\boldsymbol{{C}} \\ $$
Commented by MJS last updated on 08/Jun/18
$$\mathrm{sorry}\:\mathrm{but}\:\mathrm{this}\:\mathrm{is}\:\mathrm{wrong} \\ $$$$\int\:\frac{\sqrt{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }}{\mathrm{1}+\boldsymbol{{x}}}\boldsymbol{{dx}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{t}=\mathrm{arctan}\:{x}\:\rightarrow\:{dx}=\mathrm{sec}^{\mathrm{2}} \:{t}\:{dt}\right] \\ $$$$=\int\frac{\mathrm{sec}^{\mathrm{2}} \:{t}\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{t}}}{\mathrm{1}+\mathrm{tan}\:{t}}{dt}=\int\frac{\mathrm{sec}^{\mathrm{3}} \:{t}}{\mathrm{1}+\mathrm{tan}\:{t}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{Weierstrass}:\:{u}=\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:\rightarrow\:{dt}=\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\right] \\ $$$$=−\mathrm{2}\int\frac{\left({u}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{\left({u}−\mathrm{1}\right)^{\mathrm{2}} \left({u}+\mathrm{1}\right)^{\mathrm{2}} \left({u}^{\mathrm{2}} −\mathrm{2}{u}−\mathrm{1}\right)}{du}= \\ $$$$=−\mathrm{4}\int\frac{{du}}{{u}^{\mathrm{2}} −\mathrm{2}{u}−\mathrm{1}}+ \\ $$$$\:\:\:\:\:+\int\frac{{du}}{\left({u}−\mathrm{1}\right)^{\mathrm{2}} }−\int\frac{{du}}{\left({u}+\mathrm{1}\right)^{\mathrm{2}} }+ \\ $$$$\:\:\:\:\:\:\:\:\:\:+\int\frac{{du}}{{u}−\mathrm{1}}−\int\frac{{du}}{{u}+\mathrm{1}}= \\ $$$$=−\sqrt{\mathrm{2}}\int\frac{{du}}{{u}−\sqrt{\mathrm{2}}−\mathrm{1}}+\sqrt{\mathrm{2}}\int\frac{{du}}{{u}+\sqrt{\mathrm{2}}−\mathrm{1}}− \\ $$$$\:\:\:\:\:−\frac{\mathrm{1}}{{u}−\mathrm{1}}+\frac{\mathrm{1}}{{u}+\mathrm{1}}+ \\ $$$$\:\:\:\:\:\:\:\:\:\:+\mathrm{ln}\left({u}−\mathrm{1}\right)−\mathrm{ln}\left({u}+\mathrm{1}\right)= \\ $$$$=−\sqrt{\mathrm{2}}\mathrm{ln}\left({u}−\sqrt{\mathrm{2}}−\mathrm{1}\right)+\sqrt{\mathrm{2}}\mathrm{ln}\left({u}+\sqrt{\mathrm{2}}−\mathrm{1}\right)+ \\ $$$$\:\:\:\:\:+\frac{\mathrm{2}}{\mathrm{1}−{u}^{\mathrm{2}} }+\mathrm{ln}\:\frac{{u}−\mathrm{1}}{{u}+\mathrm{1}}= \\ $$$$=\sqrt{\mathrm{2}}\mathrm{ln}\:\frac{{u}+\sqrt{\mathrm{2}}−\mathrm{1}}{{u}−\sqrt{\mathrm{2}}−\mathrm{1}}+\mathrm{ln}\:\frac{{u}−\mathrm{1}}{{u}+\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{1}−{u}^{\mathrm{2}} }= \\ $$$$=\sqrt{\mathrm{2}}\mathrm{ln}\:\frac{\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:+\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:−\sqrt{\mathrm{2}}−\mathrm{1}}+\mathrm{ln}\:\frac{\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:−\mathrm{1}}{\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:+\mathrm{1}}+\frac{\mathrm{2}}{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\frac{{t}}{\mathrm{2}}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{tan}\:\frac{\mathrm{arctan}\:{x}}{\mathrm{2}}=\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{1}}{{x}}\right] \\ $$$$=\sqrt{\mathrm{2}}\mathrm{ln}\:\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}−\mathrm{1}}+\mathrm{ln}\:\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−{x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+{x}−\mathrm{1}}+\frac{{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{1}}= \\ $$$$=\sqrt{\mathrm{2}}\mathrm{ln}\:\frac{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\left(\mathrm{1}−\sqrt{\mathrm{2}}\right){x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}−\mathrm{1}}+\mathrm{ln}\left({x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+\mathrm{1}= \\ $$$$=\sqrt{\mathrm{2}}\mathrm{ln}\:\frac{\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\left({x}−\mathrm{1}\right)−\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}{{x}+\mathrm{1}}+\mathrm{ln}\left({x}−\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}+{C} \\ $$
Answered by MJS last updated on 08/Jun/18
$$\left.\mathrm{2}\right) \\ $$$$\int\frac{\sqrt{{x}}}{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{t}=\sqrt{{x}}\:\rightarrow\:{dx}=\mathrm{2}\sqrt{{x}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{t}^{\mathrm{2}} }{{t}^{\mathrm{6}} +{t}^{\mathrm{4}} +{t}^{\mathrm{2}} +\mathrm{1}}{dt}=\mathrm{2}\int\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{4}} +\mathrm{1}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{dt}= \\ $$$$=\int\frac{{t}^{\mathrm{2}} +\mathrm{1}}{{t}^{\mathrm{4}} +\mathrm{1}}{dt}−\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}=\int\frac{{t}^{\mathrm{2}} +\mathrm{1}}{{t}^{\mathrm{4}} +\mathrm{1}}{dt}−\mathrm{arctan}\:{t}= \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\int\frac{{t}^{\mathrm{2}} +\mathrm{1}}{{t}^{\mathrm{4}} +\mathrm{1}}{dt}=\int\frac{{t}^{\mathrm{2}} +\mathrm{1}}{\left({t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}+\mathrm{1}\right)}{dt}= \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}^{\mathrm{2}} −\sqrt{\mathrm{2}}{t}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}{t}+\mathrm{1}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left({t}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left({t}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{u}=\sqrt{\mathrm{2}}{t}\pm\mathrm{1}\:\rightarrow\:{dt}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{du}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\int\frac{{du}_{−} }{{u}_{−} ^{\mathrm{2}} +\mathrm{1}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\int\frac{{du}_{+} }{{u}_{+} ^{\mathrm{2}} +\mathrm{1}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\:{u}_{−} \:+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\:{u}_{+} = \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\left(\sqrt{\mathrm{2}}{t}−\mathrm{1}\right)+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\left(\sqrt{\mathrm{2}}{t}+\mathrm{1}\right) \\ $$$$ \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\left(\sqrt{\mathrm{2}}{t}−\mathrm{1}\right)+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{arctan}\left(\sqrt{\mathrm{2}}{t}+\mathrm{1}\right)−\mathrm{arctan}\:{t}= \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\left(\mathrm{arctan}\left(\sqrt{\mathrm{2}{x}}−\mathrm{1}\right)+\mathrm{arctan}\left(\sqrt{\mathrm{2}{x}}+\mathrm{1}\right)\right)−\mathrm{arctan}\:\sqrt{{x}}+{C} \\ $$
Answered by MJS last updated on 08/Jun/18