Menu Close

Question-37032




Question Number 37032 by ajfour last updated on 08/Jun/18
Commented by ajfour last updated on 08/Jun/18
Find Electric field at P  due to  the charge contained in the   paraboloid having a uniform  volume charge density š›’.
$${Find}\:{Electric}\:{field}\:{at}\:{P}\:\:{due}\:{to} \\ $$$${the}\:{charge}\:{contained}\:{in}\:{the}\: \\ $$$${paraboloid}\:{having}\:{a}\:{uniform} \\ $$$${volume}\:{charge}\:{density}\:\boldsymbol{\rho}. \\ $$
Answered by ajfour last updated on 08/Jun/18
let   z=Ar^2   ā‡’    z_0 =AR^2    or   A=(z_0 /R^2 )  ā‡’    z=((z_0 /R^2 ))r^2    or    r^2  = (z/z_0 )R^2   dE at P   is   (Ļƒ/(2Īµ_0 ))(1āˆ’(z/( (āˆš(z^2 +r^2 )))))  due to a disk of charge.  here lets choose an elementary disc   inside paraboloid at z=z.  dE at  P (0,0,z_P ) is              = ((Ļdz)/(2Īµ_0 ))(1āˆ’((z_P āˆ’z)/( (āˆš((z_P āˆ’z)^2 +r^2 )))))       E_P  = (Ļ/(2Īµ_0 ))[āˆ«_0 ^(  z_0 ) dzāˆ’(1/2)āˆ«_0 ^(  z_0 ) ((2(z_P āˆ’z))/( (āˆš((z_P āˆ’z)^2 +(z/z_0 )R^2 )))) dz    .....    let   u=(z_P āˆ’z)^2 +(z/z_0 )R^2      du = (āˆ’2(z_P āˆ’z)+(R^2 /z_0 ))dz  E_P =(Ļ/(2Īµ_0 ))[z_0 +(1/2)āˆ«_0 ^(  u_0 ) (du/( (āˆšu)))         āˆ’ (R^2 /(2z_0 ))āˆ«_0 ^(  z_0 ) (dz/( (āˆš((z_P āˆ’z)^2 +((zR^2 )/z_0 ))))) ]      =(Ļ/(2Īµ_0 )){z_0 +(āˆš((z_P āˆ’z_0 )^2 +R^2 )) āˆ’z_P }            āˆ’((ĻR^2 )/(4Īµ_0 z_0 ))āˆ«_0 ^(  z_0 ) (dz/( (āˆš(z^2 āˆ’2(z_P āˆ’(R^2 /(2z_0 )))+z_P ^2 ))))      =(Ļ/(2Īµ_0 )){z_0 +(āˆš((z_P āˆ’z_0 )^2 +R^2 )) āˆ’z_P }         āˆ’((ĻR^2 )/(4Īµ_0 z_0 ))āˆ«_0 ^(  z_0 ) (dz/( (āˆš((zāˆ’b)^2 +z_P ^2 āˆ’b^2 ))))      =(Ļ/(2Īµ_0 )){z_0 +(āˆš((z_P āˆ’z_0 )^2 +R^2 )) āˆ’z_P }           āˆ’((ĻR^2 )/(4Īµ_0 z_0 ))ln āˆ£zāˆ’b+(āˆš((zāˆ’b)^2 +z_P ^2 āˆ’b^2 ))āˆ£_0 ^z_0
$${let}\:\:\:{z}={Ar}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:{z}_{\mathrm{0}} ={AR}^{\mathrm{2}} \:\:\:{or}\:\:\:{A}=\frac{{z}_{\mathrm{0}} }{{R}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\:\:{z}=\left(\frac{{z}_{\mathrm{0}} }{{R}^{\mathrm{2}} }\right){r}^{\mathrm{2}} \:\:\:{or}\:\:\:\:{r}^{\mathrm{2}} \:=\:\frac{{z}}{{z}_{\mathrm{0}} }{R}^{\mathrm{2}} \\ $$$${dE}\:{at}\:{P}\:\:\:{is}\:\:\:\frac{\sigma}{\mathrm{2}\epsilon_{\mathrm{0}} }\left(\mathrm{1}āˆ’\frac{{z}}{\:\sqrt{{z}^{\mathrm{2}} +{r}^{\mathrm{2}} }}\right) \\ $$$${due}\:{to}\:{a}\:{disk}\:{of}\:{charge}. \\ $$$${here}\:{lets}\:{choose}\:{an}\:{elementary}\:{disc}\: \\ $$$${inside}\:{paraboloid}\:{at}\:{z}={z}. \\ $$$${dE}\:{at}\:\:{P}\:\left(\mathrm{0},\mathrm{0},{z}_{{P}} \right)\:{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\rho{dz}}{\mathrm{2}\epsilon_{\mathrm{0}} }\left(\mathrm{1}āˆ’\frac{{z}_{{P}} āˆ’{z}}{\:\sqrt{\left({z}_{{P}} āˆ’{z}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} }}\right) \\ $$$$\:\:\:\:\:{E}_{{P}} \:=\:\frac{\rho}{\mathrm{2}\epsilon_{\mathrm{0}} }\left[\int_{\mathrm{0}} ^{\:\:{z}_{\mathrm{0}} } {dz}āˆ’\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\:{z}_{\mathrm{0}} } \frac{\mathrm{2}\left({z}_{{P}} āˆ’{z}\right)}{\:\sqrt{\left({z}_{{P}} āˆ’{z}\right)^{\mathrm{2}} +\frac{{z}}{{z}_{\mathrm{0}} }{R}^{\mathrm{2}} }}\:{dz}\right. \\ $$$$\:\:…..\:\: \\ $$$${let}\:\:\:{u}=\left({z}_{{P}} āˆ’{z}\right)^{\mathrm{2}} +\frac{{z}}{{z}_{\mathrm{0}} }{R}^{\mathrm{2}} \\ $$$$\:\:\:{du}\:=\:\left(āˆ’\mathrm{2}\left({z}_{{P}} āˆ’{z}\right)+\frac{{R}^{\mathrm{2}} }{{z}_{\mathrm{0}} }\right){dz} \\ $$$${E}_{{P}} =\frac{\rho}{\mathrm{2}\epsilon_{\mathrm{0}} }\left[{z}_{\mathrm{0}} +\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\:{u}_{\mathrm{0}} } \frac{{du}}{\:\sqrt{{u}}}\right. \\ $$$$\left.\:\:\:\:\:\:\:āˆ’\:\frac{{R}^{\mathrm{2}} }{\mathrm{2}{z}_{\mathrm{0}} }\int_{\mathrm{0}} ^{\:\:{z}_{\mathrm{0}} } \frac{{dz}}{\:\sqrt{\left({z}_{{P}} āˆ’{z}\right)^{\mathrm{2}} +\frac{{zR}^{\mathrm{2}} }{{z}_{\mathrm{0}} }}}\:\right] \\ $$$$\:\:\:\:=\frac{\rho}{\mathrm{2}\epsilon_{\mathrm{0}} }\left\{{z}_{\mathrm{0}} +\sqrt{\left({z}_{{P}} āˆ’{z}_{\mathrm{0}} \right)^{\mathrm{2}} +{R}^{\mathrm{2}} }\:āˆ’{z}_{{P}} \right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:āˆ’\frac{\rho{R}^{\mathrm{2}} }{\mathrm{4}\epsilon_{\mathrm{0}} {z}_{\mathrm{0}} }\int_{\mathrm{0}} ^{\:\:{z}_{\mathrm{0}} } \frac{{dz}}{\:\sqrt{{z}^{\mathrm{2}} āˆ’\mathrm{2}\left({z}_{{P}} āˆ’\frac{{R}^{\mathrm{2}} }{\mathrm{2}{z}_{\mathrm{0}} }\right)+{z}_{{P}} ^{\mathrm{2}} }} \\ $$$$\:\:\:\:=\frac{\rho}{\mathrm{2}\epsilon_{\mathrm{0}} }\left\{{z}_{\mathrm{0}} +\sqrt{\left({z}_{{P}} āˆ’{z}_{\mathrm{0}} \right)^{\mathrm{2}} +{R}^{\mathrm{2}} }\:āˆ’{z}_{{P}} \right\} \\ $$$$\:\:\:\:\:\:\:āˆ’\frac{\rho{R}^{\mathrm{2}} }{\mathrm{4}\epsilon_{\mathrm{0}} {z}_{\mathrm{0}} }\int_{\mathrm{0}} ^{\:\:{z}_{\mathrm{0}} } \frac{{dz}}{\:\sqrt{\left({z}āˆ’{b}\right)^{\mathrm{2}} +{z}_{{P}} ^{\mathrm{2}} āˆ’{b}^{\mathrm{2}} }} \\ $$$$\:\:\:\:=\frac{\rho}{\mathrm{2}\epsilon_{\mathrm{0}} }\left\{{z}_{\mathrm{0}} +\sqrt{\left({z}_{{P}} āˆ’{z}_{\mathrm{0}} \right)^{\mathrm{2}} +{R}^{\mathrm{2}} }\:āˆ’{z}_{{P}} \right\} \\ $$$$\:\:\:\:\:\:\:\:\:āˆ’\frac{\rho{R}^{\mathrm{2}} }{\mathrm{4}\epsilon_{\mathrm{0}} {z}_{\mathrm{0}} }\mathrm{ln}\:\mid{z}āˆ’{b}+\sqrt{\left({z}āˆ’{b}\right)^{\mathrm{2}} +{z}_{{P}} ^{\mathrm{2}} āˆ’{b}^{\mathrm{2}} }\mid_{\mathrm{0}} ^{{z}_{\mathrm{0}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *