Menu Close

Question-37485




Question Number 37485 by ajfour last updated on 13/Jun/18
Commented by ajfour last updated on 13/Jun/18
Relate r and R if  𝛂, d are given.
$${Relate}\:\boldsymbol{{r}}\:{and}\:\boldsymbol{{R}}\:{if}\:\:\boldsymbol{\alpha},\:\boldsymbol{{d}}\:{are}\:{given}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18
join M and C    MA=MB (length of tangents  from external point M)  tan(α/2)=(R/(MA))  so MA=(R/(tan(α/2)))=Rcot(α/2)  tan(((Π−α)/2))=(r/(MT))     cot(α/2)=(r/(MT))    so MT=rtan(α/2)  TA=MT+MA=rtan(α/2)+Rcot(α/2)  draw ⊥ from p to CA...its length=TA  (rtan(α/2)+Rcot(α/2))^2 +(R−r)^2 =d^2
$${join}\:{M}\:{and}\:{C}\:\:\:\:{MA}={MB}\:\left({length}\:{of}\:{tangents}\right. \\ $$$$\left.{from}\:{external}\:{point}\:{M}\right) \\ $$$${tan}\frac{\alpha}{\mathrm{2}}=\frac{{R}}{{MA}}\:\:{so}\:{MA}=\frac{{R}}{{tan}\frac{\alpha}{\mathrm{2}}}={Rcot}\frac{\alpha}{\mathrm{2}} \\ $$$${tan}\left(\frac{\Pi−\alpha}{\mathrm{2}}\right)=\frac{{r}}{{MT}}\:\:\: \\ $$$${cot}\frac{\alpha}{\mathrm{2}}=\frac{{r}}{{MT}}\:\:\:\:{so}\:{MT}={rtan}\frac{\alpha}{\mathrm{2}} \\ $$$${TA}={MT}+{MA}={rtan}\frac{\alpha}{\mathrm{2}}+{Rcot}\frac{\alpha}{\mathrm{2}} \\ $$$${draw}\:\bot\:{from}\:{p}\:{to}\:{CA}…{its}\:{length}={TA} \\ $$$$\left({rtan}\frac{\alpha}{\mathrm{2}}+{Rcot}\frac{\alpha}{\mathrm{2}}\right)^{\mathrm{2}} +\left({R}−{r}\right)^{\mathrm{2}} ={d}^{\mathrm{2}} \\ $$
Commented by ajfour last updated on 14/Jun/18
thanks sir.
$${thanks}\:{sir}.\: \\ $$
Answered by behi83417@gmail.com last updated on 13/Jun/18
AT^2 =d^2 −(R−r)^2   ⇒AB=2Rcos(α/2),TG=2rsin(α/2)  TM=r.tg(α/2),AM=R.cotg(α/2)  ⇒d^2 −(R−r)^2 =(r.tg(α/2)+R.cotg(α/2))^2 ⇒  d^2 =R^2 cosec^2 (α/2)+r^2 sec^2 (α/2)  (i)
$${AT}^{\mathrm{2}} =\boldsymbol{{d}}^{\mathrm{2}} −\left({R}−{r}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{AB}=\mathrm{2}{Rcos}\frac{\alpha}{\mathrm{2}},{TG}=\mathrm{2}{rsin}\frac{\alpha}{\mathrm{2}} \\ $$$${TM}={r}.{tg}\frac{\alpha}{\mathrm{2}},{AM}={R}.{cotg}\frac{\alpha}{\mathrm{2}} \\ $$$$\Rightarrow\boldsymbol{{d}}^{\mathrm{2}} −\left({R}−{r}\right)^{\mathrm{2}} =\left({r}.{tg}\frac{\alpha}{\mathrm{2}}+{R}.{cotg}\frac{\alpha}{\mathrm{2}}\right)^{\mathrm{2}} \Rightarrow \\ $$$${d}^{\mathrm{2}} ={R}^{\mathrm{2}} {cosec}^{\mathrm{2}} \frac{\alpha}{\mathrm{2}}+{r}^{\mathrm{2}} {sec}^{\mathrm{2}} \frac{\alpha}{\mathrm{2}}\:\:\left(\boldsymbol{{i}}\right) \\ $$
Commented by ajfour last updated on 14/Jun/18
thank you sir.
$${thank}\:{you}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *