Question Number 38015 by ajfour last updated on 20/Jun/18
Commented by ajfour last updated on 20/Jun/18
$${Find}\:\theta\:{in}\:{terms}\:{of}\:\boldsymbol{{d}},\:\boldsymbol{{R}}\:{if}\:{circle} \\ $$$${has}\:{all}\:{three}\:{coloured}\:{areas}\:{equal}. \\ $$
Commented by MrW3 last updated on 21/Jun/18
$${let}\:\alpha=\angle{TCQ} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}×\pi{R}^{\mathrm{2}} =\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\left(\alpha−\mathrm{sin}\:\alpha\right) \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\alpha−\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\Rightarrow\alpha=\mathrm{149}.\mathrm{27}° \\ $$$$ \\ $$$${R}\:\mathrm{cos}\:\left(\frac{\alpha}{\mathrm{2}}\right)={d}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\theta=\mathrm{sin}^{−\mathrm{1}} \left[\frac{{R}}{{d}}\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right]=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{0}.\mathrm{265}\frac{{R}}{{d}}\right) \\ $$
Commented by ajfour last updated on 21/Jun/18
$${Quite}\:{short}\:\&\:{very}\:{nice}\:.{Thanks}. \\ $$$${Please}\:{try}\:{the}\:\bigtriangleup\:{one},\:{Sir}. \\ $$
Commented by ajfour last updated on 21/Jun/18
$${What}\:{is}\:{d}\:{in}\:{terms}\:{of}\:{R}\:{if}\:{the} \\ $$$${area}\:{P}\overset{\frown} {{ST}}\:\:{is}\:{also}\:{equal}\:{to}\:\frac{\pi{R}^{\mathrm{2}} }{\mathrm{3}}\:. \\ $$
Commented by MrW3 last updated on 21/Jun/18
$${let}\:\beta=\angle{QCR} \\ $$$$\beta=\mathrm{2}\left[\theta+\frac{\pi}{\mathrm{2}}−\frac{\alpha}{\mathrm{2}}\right]=\mathrm{2}\theta+\pi−\alpha \\ $$$${A}_{{PQRP}} =\mathrm{2}×\frac{\pi{R}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{2}}{d}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta+\frac{\mathrm{1}}{\mathrm{2}}{R}^{\mathrm{2}} \mathrm{sin}\:\frac{\alpha}{\mathrm{2}}\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}\right]+\frac{{R}^{\mathrm{2}} \beta}{\mathrm{2}}=\frac{\mathrm{2}\pi{R}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\left(\frac{{d}}{{R}}\right)^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta+\mathrm{sin}\:\alpha+\beta=\frac{\mathrm{4}\pi}{\mathrm{3}} \\ $$$$\left(\frac{{d}}{{R}}\right)^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta+\mathrm{sin}\:\alpha+\mathrm{2}\theta+\pi−\alpha=\frac{\mathrm{4}\pi}{\mathrm{3}} \\ $$$${since}\:\alpha−\mathrm{sin}\:\alpha=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$$\Rightarrow\left(\frac{{d}}{{R}}\right)^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta+\mathrm{2}\theta+\pi−\frac{\mathrm{2}\pi}{\mathrm{3}}=\frac{\mathrm{4}\pi}{\mathrm{3}} \\ $$$$\Rightarrow\left(\frac{{d}}{{R}}\right)^{\mathrm{2}} \mathrm{sin}\:\mathrm{2}\theta+\mathrm{2}\theta=\pi \\ $$$${since}\:\theta=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\frac{{d}}{{R}}}\right)=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}\right) \\ $$$${let}\:\delta=\frac{{d}}{{R}} \\ $$$$\mathrm{sin}\:\mathrm{2}\theta=\mathrm{2sin}\:\theta\mathrm{cos}\:\theta=\mathrm{2}×\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}×\sqrt{\mathrm{1}−\left(\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\delta^{\mathrm{2}} \mathrm{2}×\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}×\sqrt{\mathrm{1}−\left(\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}\right)^{\mathrm{2}} }+\mathrm{2sin}^{−\mathrm{1}} \left(\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}\right)=\pi \\ $$$$\Rightarrow\delta\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}×\sqrt{\mathrm{1}−\left(\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}\right)^{\mathrm{2}} }+\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}\right)=\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\delta\:\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}×\sqrt{\mathrm{1}−\left(\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}\right)^{\mathrm{2}} }=\frac{\pi}{\mathrm{2}}−\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}\right) \\ $$$$\Rightarrow\mathrm{cos}^{\mathrm{2}} \:\frac{\alpha}{\mathrm{2}}\sqrt{\mathrm{1}−\left(\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}\right)^{\mathrm{2}} }=\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}\left(\frac{\pi}{\mathrm{2}}−\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}}{\delta}\right)\right) \\ $$$${with}\:\alpha=\mathrm{149}.\mathrm{27}° \\ $$$$\Rightarrow\delta=\mathrm{5}.\mathrm{7612} \\ $$$$\Rightarrow{d}=\mathrm{5}.\mathrm{7612}{R} \\ $$
Commented by ajfour last updated on 21/Jun/18
$${Thank}\:{you}\:{sir}.\:{Wonderful} \\ $$$${solution}. \\ $$