Menu Close

Question-38024




Question Number 38024 by Tinkutara last updated on 20/Jun/18
Answered by ajfour last updated on 20/Jun/18
f(x) < 0  and  2f(sin x)+(√2)f(−cos x)=−tan x  Then  for x=150°  2f((1/2))+(√2)f(((√3)/2))=(1/( (√3)))   ......(i)  for x= 120°  2f(((√3)/2))+(√2)f((1/2))=(√3)    ....(ii)  (i)×(√2) −(ii) gives     (√2)f((1/2)) = ((√2)/( (√3)))−(√3)     ⇒   f((1/2)) = (1/( (√3)))−((√3)/( (√2)))      or   f((1/2)) = (((√2)−3)/( (√6)))     (A) .
$${f}\left({x}\right)\:<\:\mathrm{0}\:\:{and} \\ $$$$\mathrm{2}{f}\left(\mathrm{sin}\:{x}\right)+\sqrt{\mathrm{2}}{f}\left(−\mathrm{cos}\:{x}\right)=−\mathrm{tan}\:{x} \\ $$$${Then}\:\:{for}\:{x}=\mathrm{150}° \\ $$$$\mathrm{2}{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\sqrt{\mathrm{2}}{f}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\:\:……\left({i}\right) \\ $$$${for}\:{x}=\:\mathrm{120}° \\ $$$$\mathrm{2}{f}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)+\sqrt{\mathrm{2}}{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\sqrt{\mathrm{3}}\:\:\:\:….\left({ii}\right) \\ $$$$\left({i}\right)×\sqrt{\mathrm{2}}\:−\left({ii}\right)\:{gives} \\ $$$$\:\:\:\sqrt{\mathrm{2}}{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{3}}}−\sqrt{\mathrm{3}} \\ $$$$\:\:\:\Rightarrow\:\:\:{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}−\frac{\sqrt{\mathrm{3}}}{\:\sqrt{\mathrm{2}}}\: \\ $$$$\:\:\:{or}\:\:\:{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\:\frac{\sqrt{\mathrm{2}}−\mathrm{3}}{\:\sqrt{\mathrm{6}}}\:\:\:\:\:\left({A}\right)\:. \\ $$
Commented by Tinkutara last updated on 20/Jun/18
Commented by Tinkutara last updated on 20/Jun/18
Sir is this wrong anywhere?
Commented by ajfour last updated on 21/Jun/18
at   x=((2π)/3),    f(cos x) = f(−(1/2))
$${at}\:\:\:{x}=\frac{\mathrm{2}\pi}{\mathrm{3}},\:\:\:\:{f}\left(\mathrm{cos}\:{x}\right)\:=\:{f}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$
Commented by Tinkutara last updated on 24/Jun/18
But it is f(−cos x) there.
$${But}\:{it}\:{is}\:{f}\left(−\mathrm{cos}\:{x}\right)\:{there}. \\ $$
Commented by ajfour last updated on 24/Jun/18
No, it is f(cos x) there; your  eq.  (2) where you set x=((2π)/3) .
$${No},\:{it}\:{is}\:{f}\left(\mathrm{cos}\:{x}\right)\:{there};\:{your}\:\:{eq}. \\ $$$$\left(\mathrm{2}\right)\:{where}\:{you}\:{set}\:{x}=\frac{\mathrm{2}\pi}{\mathrm{3}}\:. \\ $$
Commented by Tinkutara last updated on 24/Jun/18
No Sir, I first changed x→−x  f(−cos x)=f(−cos (−x))  I had put a little minus sign.
$${No}\:{Sir},\:{I}\:{first}\:{changed}\:{x}\rightarrow−{x} \\ $$$${f}\left(−\mathrm{cos}\:{x}\right)={f}\left(−\mathrm{cos}\:\left(−{x}\right)\right) \\ $$$${I}\:{had}\:{put}\:{a}\:{little}\:{minus}\:{sign}. \\ $$
Commented by ajfour last updated on 24/Jun/18
In quwstion it is said f(x) is  always negative. Nothing  wrong with your steps, just that  this answer is discarded   becoz of the condition in  question f(x) < 0 .
$${In}\:{quwstion}\:{it}\:{is}\:{said}\:{f}\left({x}\right)\:{is} \\ $$$${always}\:{negative}.\:{Nothing} \\ $$$${wrong}\:{with}\:{your}\:{steps},\:{just}\:{that} \\ $$$${this}\:{answer}\:{is}\:{discarded}\: \\ $$$${becoz}\:{of}\:{the}\:{condition}\:{in} \\ $$$${question}\:{f}\left({x}\right)\:<\:\mathrm{0}\:. \\ $$
Commented by Tinkutara last updated on 25/Jun/18
Thanks Sir!

Leave a Reply

Your email address will not be published. Required fields are marked *