Question Number 38373 by tanmay.chaudhury50@gmail.com last updated on 24/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18
$${I}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{tan}^{−\mathrm{1}} \left({ax}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$$$\frac{{dI}\left({a}\right)}{{da}}=\int_{\mathrm{0}} ^{\infty} \frac{\partial}{\partial{a}}\frac{{tan}^{−\mathrm{1}} {ax}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{xdx}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{a}^{\mathrm{2}} }{\left({a}^{\mathrm{2}} +{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)}{dx} \\ $$$$=\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{1}}\int_{\mathrm{0}} ^{\infty} \frac{\left({a}^{\mathrm{2}} +{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)−\left(\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)}{\left({a}^{\mathrm{2}} +{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)}{dx} \\ $$$$=\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{1}}\left\{\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} }−\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{a}^{\mathrm{2}} +{a}^{\mathrm{2}} {x}^{\mathrm{2}} }\right\} \\ $$$$=\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{1}}\left\{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+{x}^{\mathrm{2}} \right)}−\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\right\} \\ $$$$=\frac{\mathrm{1}}{{a}^{\mathrm{2}} −\mathrm{1}}\mid\left\{{atan}^{−\mathrm{1}} \left({ax}\right)−{tan}^{−\mathrm{1}} {x}\right\}\mid_{\mathrm{0}} ^{\infty} \\ $$$$=\frac{\mathrm{1}}{{a}^{\mathrm{2}} −\mathrm{1}}\left\{{atan}^{−\mathrm{1}} \left(\infty\right)−{tan}^{−\mathrm{1}} \left(\infty\right)\right\} \\ $$$$=\frac{\mathrm{1}}{{a}^{\mathrm{2}} −\mathrm{1}}\left\{{a}\frac{\Pi}{\mathrm{2}}−\frac{\Pi}{\mathrm{2}}\right\} \\ $$$$\frac{{dI}}{{da}}=\frac{\Pi}{\mathrm{2}}×\frac{{a}−\mathrm{1}}{\left({a}+\mathrm{1}\right)\left({a}−\mathrm{1}\right)} \\ $$$${dI}=\frac{\Pi}{\mathrm{2}}\frac{{da}}{\left({a}+\mathrm{1}\right)} \\ $$$${I}=\frac{\Pi}{\mathrm{2}}{ln}\left({a}+\mathrm{1}\right)+{c} \\ $$$${when}\:{a}=\mathrm{0}\:\:\:{I}=\mathrm{0}\:\:{so}\:\:{c}=\mathrm{0} \\ $$$${I}=\frac{\Pi}{\mathrm{2}}{ln}\left({a}+\mathrm{1}\right) \\ $$
Commented by math khazana by abdo last updated on 25/Jun/18
$${you}\:{answer}\:{is}\:{not}\:{correct}\:{sir}\:{Tanmay}…{thre}\:{is} \\ $$$${something}\:{wrong}… \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18
$${no}\:{i}\:{have}\:{checked}\:{it}…{and}\:{it}\:{is}\:{right}… \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18
Commented by prof Abdo imad last updated on 25/Jun/18
$$\left.\mathrm{5}\right)\:{let}\:{f}\left({a}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left({ax}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{dx}\:{we}\:{have} \\ $$$${f}^{'} \left({a}\right)\:=\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{x}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)}\:{let}\:{decompose} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} \right)} \\ $$$${F}\left({x}\right)=\:\frac{\alpha{x}+{b}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:+\frac{{cx}+{d}}{\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} } \\ $$$${F}\left(−{x}\right)={F}\left({x}\right)\:\Rightarrow\frac{−\alpha{x}\:+{b}}{\mathrm{1}+{x}^{\mathrm{2}} }\:+\frac{−{cx}\:+{d}}{\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} }\:={F}\left({x}\right)\Rightarrow \\ $$$$\alpha={c}=\mathrm{0}\:\Rightarrow{F}\left({x}\right)=\:\frac{{b}}{\mathrm{1}+{x}^{\mathrm{2}} }\:+\frac{{d}}{\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} } \\ $$$${lim}_{{x}\rightarrow+\infty} {x}^{\mathrm{2}} \:{F}\left({x}\right)={b}\:+\frac{{d}}{{a}^{\mathrm{2}} }\:=\mathrm{0}\:\Rightarrow{d}\:+{a}^{\mathrm{2}} {b}=\mathrm{0}\:\Rightarrow \\ $$$${d}=−{a}^{\mathrm{2}} {b}\:\Rightarrow{F}\left({x}\right)=\frac{{b}}{\mathrm{1}+{x}^{\mathrm{2}} }\:−{a}^{\mathrm{2}} \:\:\frac{{b}}{\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} } \\ $$$${F}\left(\mathrm{0}\right)=\mathrm{1}\:={b}\:−{a}^{\mathrm{2}} {b}\:=\left(\mathrm{1}−{a}^{\mathrm{2}} \right){b}\:\Rightarrow{b}=\:\frac{\mathrm{1}}{\mathrm{1}−{a}^{\mathrm{2}} } \\ $$$$\left({we}\:{suppose}\:{that}\:{a}^{\mathrm{2}} \:\neq\mathrm{1}\right)\:\Rightarrow \\ $$$${F}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{1}−{a}^{\mathrm{2}} }\left\{\:\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:−\frac{{a}^{\mathrm{2}} }{\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} }\right\}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}−{a}^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:−\frac{{a}^{\mathrm{2}} }{\mathrm{1}−{a}^{\mathrm{2}} }\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} } \\ $$$${changement}\:{ax}={t}\:{give}\left(\:{a}>\mathrm{0}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{1}+{a}^{\mathrm{2}} {x}^{\mathrm{2}} }\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\frac{{dt}}{{a}}\:=\:\frac{\pi}{\mathrm{2}{a}}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)\:=\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)}\:−\frac{{a}^{\mathrm{2}} }{\mathrm{1}−{a}^{\mathrm{2}} }\:\frac{\pi}{\mathrm{2}{a}} \\ $$$$=\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)}\left\{\:\mathrm{1}\:−{a}\right\}\:=\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}+{a}\right)}\:\Rightarrow \\ $$$${f}\left({a}\right)\:=\frac{\pi}{\mathrm{2}}\:\int\:\:\:\:\frac{{da}}{\mathrm{1}+{a}}\:+{c}=\:\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{1}+{a}\right)\:+{c} \\ $$$${c}={f}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow\:{f}\left({a}\right)=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{1}+{a}\right) \\ $$$${if}\:{a}<\mathrm{0}\:{and}\:{a}\neq−\mathrm{1}\:\:{changegent}\:{ax}=−{t}\:{give} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\frac{−{dt}}{{a}}\:=−\frac{\pi}{\mathrm{2}{a}}\:\Rightarrow \\ $$$${f}^{'} \left({a}\right)=\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)}\:−\frac{{a}^{\mathrm{2}} }{\mathrm{1}−{a}^{\mathrm{2}} }\left(−\frac{\pi}{\mathrm{2}{a}}\right) \\ $$$$=\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}−{a}^{\mathrm{2}} \right)}\left\{\:\mathrm{1}+{a}\right\}\:=\:\frac{\pi}{\mathrm{2}\left(\mathrm{1}−{a}\right)}\:\Rightarrow \\ $$$${f}\left({a}\right)\:=\:\frac{\pi}{\mathrm{2}}\:\int\:\:\:\frac{{da}}{\mathrm{1}−{a}}\:=−\frac{\pi}{\mathrm{2}}{ln}\mid\mathrm{1}−{a}\mid\:+{c}\:{but}\:{c}={f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\Rightarrow{f}\left({a}\right)\:=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{1}−{a}\right). \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18