Menu Close

Question-38775




Question Number 38775 by ajfour last updated on 29/Jun/18
Commented by ajfour last updated on 29/Jun/18
On a segment of length c , is kept  a unit square, overhanging a little;  such that (see diagram).  Find the length of segment c  under the bottom edge of square.
Onasegmentoflengthc,iskeptaunitsquare,overhangingalittle;suchthat(seediagram).Findthelengthofsegmentcunderthebottomedgeofsquare.
Commented by MrW3 last updated on 29/Jun/18
I think you have to give an additional  condition, e.g. the radius of the circle,  otherwise the segment c is not unique.
Ithinkyouhavetogiveanadditionalcondition,e.g.theradiusofthecircle,otherwisethesegmentcisnotunique.
Answered by MrW3 last updated on 30/Jun/18
let R=radius of the circle  let a=side of the square (a=1)  c=2R−a+x  (a/h)=(h/(2R−a))⇒h=(√(a(2R−a)))  (x/a)=(a/h)⇒x=(a^2 /h)=(a^2 /( (√(a(2R−a)))))  ⇒c=2R−a+(a^2 /( (√(a(2R−a)))))
letR=radiusofthecircleleta=sideofthesquare(a=1)c=2Ra+xah=h2Rah=a(2Ra)xa=ahx=a2h=a2a(2Ra)c=2Ra+a2a(2Ra)
Commented by MrW3 last updated on 30/Jun/18
Commented by ajfour last updated on 30/Jun/18
let  tan θ = (x/a)      tan θ = (x/a) =(a/h) = (h/(c−x))  ⇒ (x^2 /a^2 ) = (a/(c−x))      and as a=1     x^3 −cx^2 +1=0   Let   y=(1/x)       ⇒    y^3 −cy+1=0  let   y=u+v  ⇒  u^3 +v^3 +3uv(u+v)−c(u+v)+1=0  or    u^3 +v^3 +(u+v)(3uv−c)+1=0  let   3uv = c    ⇒  u^3 v^3 = (c^3 /(27))  ⇒     u^3 +v^3  = −1  u^3 , v^3  are roots of          z^2 +z+(c^3 /(27)) =0       u^3 , v^3   = ((−1±(√(1−((4c^3 )/(27)))))/2)                    =((−1)/2)±(√((1/4)−(c^3 /(27))))     y= ((−(1/2)−(√((1/4)−(c^3 /(27))))))^(1/3)                     +((−(1/2)+(√((1/4)−(c^3 /(27)))) ))^(1/3)            x= (1/y) .
lettanθ=xatanθ=xa=ah=hcxx2a2=acxandasa=1x3cx2+1=0Lety=1xy3cy+1=0lety=u+vu3+v3+3uv(u+v)c(u+v)+1=0oru3+v3+(u+v)(3uvc)+1=0let3uv=cu3v3=c327u3+v3=1u3,v3arerootsofz2+z+c327=0u3,v3=1±14c3272=12±14c327y=1214c3273+12+14c3273x=1y.
Commented by MJS last updated on 30/Jun/18
a=1 ⇒ c=((1+(√((2R−1)^3 )))/( (√(2R−1)))); R>(1/2)  (dc/dR)=2−(1/( (√((2R−1)^3 ))))  ⇒ c is minimal for R=(1/2)+((2)^(1/3) /4); c=((3(2)^(1/3) )/2)
a=1c=1+(2R1)32R1;R>12dcdR=21(2R1)3cisminimalforR=12+234;c=3232
Commented by MJS last updated on 01/Jul/18
x^3 −cx^2 +1=0  x=z+(c/3)  (z+(c/3))^3 −c(z+(c/3))^2 +1=0  z^3 −(c^2 /3)z+((27−2c^3 )/(27))=0  u=(((1/(27))c^3 −(1/2)+((√3)/(18))(√(27−4c^3 ))))^(1/3) ; v=(((1/(27))c^3 −(1/2)−((√3)/(18))(√(27−4c^3 ))))^(1/3)   z_1 =u+v; x_1 =z_1 +(c/3)  z_2 =(−(1/2)−((√3)/2)i)u+(−(1/2)+((√3)/2)i)v; x_2 =z_2 +(c/3)  z_3 =(−(1/2)+((√3)/2)i)u+(−(1/2)−((√3)/2)i)v; x_3 =z_3 +(c/3)  I think this is easier than to find x=(1/y) with  y being a sum of two cubic roots. anyway  both methods lead to the same values, if you  use a calculator to get approximate values  the methods are equal...
x3cx2+1=0x=z+c3(z+c3)3c(z+c3)2+1=0z3c23z+272c327=0u=127c312+318274c33;v=127c312318274c33z1=u+v;x1=z1+c3z2=(1232i)u+(12+32i)v;x2=z2+c3z3=(12+32i)u+(1232i)v;x3=z3+c3Ithinkthisiseasierthantofindx=1ywithybeingasumoftwocubicroots.anywaybothmethodsleadtothesamevalues,ifyouuseacalculatortogetapproximatevaluesthemethodsareequal

Leave a Reply

Your email address will not be published. Required fields are marked *