Menu Close

Question-39470




Question Number 39470 by Raj Singh last updated on 06/Jul/18
Commented by maxmathsup by imad last updated on 07/Jul/18
x^2  +y^2  =1 ⇒y^2 =1−x^2  ⇒1−x^2  =4x−4 ⇒x^2  +4x −5 =0⇒  Δ^′ =2^2   +5 =9  ⇒ x_1 =−2 +3 =1  and x_2 =−2−3 =−5  x=1⇒y=0 ⇒ A(1,0) is intersection  x=−5 ⇒y^2  =−24  and this is impossibleso the first point is A.
$${x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:=\mathrm{1}\:\Rightarrow{y}^{\mathrm{2}} =\mathrm{1}−{x}^{\mathrm{2}} \:\Rightarrow\mathrm{1}−{x}^{\mathrm{2}} \:=\mathrm{4}{x}−\mathrm{4}\:\Rightarrow{x}^{\mathrm{2}} \:+\mathrm{4}{x}\:−\mathrm{5}\:=\mathrm{0}\Rightarrow \\ $$$$\Delta^{'} =\mathrm{2}^{\mathrm{2}} \:\:+\mathrm{5}\:=\mathrm{9}\:\:\Rightarrow\:{x}_{\mathrm{1}} =−\mathrm{2}\:+\mathrm{3}\:=\mathrm{1}\:\:{and}\:{x}_{\mathrm{2}} =−\mathrm{2}−\mathrm{3}\:=−\mathrm{5} \\ $$$${x}=\mathrm{1}\Rightarrow{y}=\mathrm{0}\:\Rightarrow\:{A}\left(\mathrm{1},\mathrm{0}\right)\:{is}\:{intersection} \\ $$$${x}=−\mathrm{5}\:\Rightarrow{y}^{\mathrm{2}} \:=−\mathrm{24}\:\:{and}\:{this}\:{is}\:{impossibleso}\:{the}\:{first}\:{point}\:{is}\:{A}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 07/Jul/18
Answered by ajfour last updated on 06/Jul/18
x^2 +4(x−1)=1  x^2 +4x−5=0  (x+2)^2 =9  x=−2±3 ;  but for parabola x ≥ 1  hence only point is (1,0) ; hence  they touch (circle being a closed  curve).
$${x}^{\mathrm{2}} +\mathrm{4}\left({x}−\mathrm{1}\right)=\mathrm{1} \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{5}=\mathrm{0} \\ $$$$\left({x}+\mathrm{2}\right)^{\mathrm{2}} =\mathrm{9} \\ $$$${x}=−\mathrm{2}\pm\mathrm{3}\:;\:\:{but}\:{for}\:{parabola}\:{x}\:\geqslant\:\mathrm{1} \\ $$$${hence}\:{only}\:{point}\:{is}\:\left(\mathrm{1},\mathrm{0}\right)\:;\:{hence} \\ $$$${they}\:{touch}\:\left({circle}\:{being}\:{a}\:{closed}\right. \\ $$$$\left.{curve}\right). \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Jul/18
solve...  x^2 +4x−4=1  x^2 +5x−x−5=0  x(x+5)−1(x+5)=0  (x+5)(x−1)=0  x=1,−5  when x=1  y=0  25+y^2 =1  then y^2 =−24  which is not possible.  a circle and parabola intesect at two distinct  points But here only one solution(1,0)  satisfy both equation...  so thiz two curve circle and parabola can not  intersect at single point...Hence they touch  each other at (1,0)
$${solve}… \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{4}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} +\mathrm{5}{x}−{x}−\mathrm{5}=\mathrm{0} \\ $$$${x}\left({x}+\mathrm{5}\right)−\mathrm{1}\left({x}+\mathrm{5}\right)=\mathrm{0} \\ $$$$\left({x}+\mathrm{5}\right)\left({x}−\mathrm{1}\right)=\mathrm{0} \\ $$$${x}=\mathrm{1},−\mathrm{5} \\ $$$${when}\:{x}=\mathrm{1}\:\:{y}=\mathrm{0} \\ $$$$\mathrm{25}+{y}^{\mathrm{2}} =\mathrm{1}\:\:{then}\:{y}^{\mathrm{2}} =−\mathrm{24}\:\:{which}\:{is}\:{not}\:{possible}. \\ $$$${a}\:{circle}\:{and}\:{parabola}\:{intesect}\:{at}\:{two}\:{distinct} \\ $$$${points}\:\boldsymbol{{B}}{ut}\:{here}\:{only}\:{one}\:{solution}\left(\mathrm{1},\mathrm{0}\right) \\ $$$${satisfy}\:{both}\:{equation}… \\ $$$${so}\:{thiz}\:{two}\:{curve}\:{circle}\:{and}\:{parabola}\:{can}\:{not} \\ $$$${intersect}\:{at}\:{single}\:{point}…\boldsymbol{{H}}{ence}\:{they}\:{touch} \\ $$$${each}\:{other}\:{at}\:\left(\mathrm{1},\mathrm{0}\right) \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 07/Jul/18
when touch  each other slope value caculated st that with   respect to both curve should be same  x^2 +y^2 =1  2x +2y.(dy/dx)=0  (dy/dx) at(1,0) is  m_1 =(((−x)/y))_(1′0) =∞        y^2 =4(x−1)  2y(dy/dx)=4    (dy/dx)=(2/y)  so slope at (1,0)  is=∞=
$${when}\:{touch}\:\:{each}\:{other}\:{slope}\:{value}\:{caculated}\:{st}\:{that}\:{with}\: \\ $$$${respect}\:{to}\:{both}\:{curve}\:{should}\:{be}\:{same} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{2}{x}\:+\mathrm{2}{y}.\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}\:{at}\left(\mathrm{1},\mathrm{0}\right)\:{is}\:\:{m}_{\mathrm{1}} =\left(\frac{−{x}}{{y}}\right)_{\mathrm{1}'\mathrm{0}} =\infty \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${y}^{\mathrm{2}} =\mathrm{4}\left({x}−\mathrm{1}\right) \\ $$$$\mathrm{2}{y}\frac{{dy}}{{dx}}=\mathrm{4}\:\:\:\:\frac{{dy}}{{dx}}=\frac{\mathrm{2}}{{y}}\:\:{so}\:{slope}\:{at}\:\left(\mathrm{1},\mathrm{0}\right)\:\:{is}=\infty= \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *