Question Number 39559 by ajfour last updated on 07/Jul/18
Commented by ajfour last updated on 07/Jul/18
$${Find}\:\boldsymbol{\alpha}\:{and}\:{radius}\:\boldsymbol{{r}}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}}. \\ $$
Answered by MrW3 last updated on 08/Jul/18
$$\mathrm{2}{R}×\mathrm{cos}\:\alpha=\mathrm{1}+{a}\:\:\:…\left({i}\right) \\ $$$$\frac{{R}}{\mathrm{cos}\:\alpha}−\mathrm{1}=\left({R}+{R}\:\mathrm{tan}\:\alpha\right)\:\mathrm{sin}\:\alpha\:\:\:…\left({ii}\right) \\ $$$$\Rightarrow{R}=\frac{\mathrm{1}+{a}}{\mathrm{2}\:\mathrm{cos}\:\alpha} \\ $$$$\frac{\mathrm{1}+{a}}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha}−\mathrm{1}=\frac{\mathrm{1}+{a}}{\mathrm{2}\:\mathrm{cos}\:\alpha}\left(\mathrm{1}+\frac{\mathrm{sin}\:\alpha}{\mathrm{cos}\:\alpha}\right)\:\mathrm{sin}\:\alpha \\ $$$$\frac{\mathrm{1}+{a}−\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha}=\frac{\left(\mathrm{1}+{a}\right)\left(\mathrm{cos}\:\alpha+\mathrm{sin}\:\alpha\right)\mathrm{sin}\:\alpha}{\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha} \\ $$$$\mathrm{1}+{a}−\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha=\left(\mathrm{1}+{a}\right)\left(\mathrm{sin}\:\alpha\:\mathrm{cos}\:\alpha+\mathrm{sin}^{\mathrm{2}} \:\alpha\right) \\ $$$$\mathrm{2}\left[{a}−\left(\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\alpha−\mathrm{1}\right)\right]=\left(\mathrm{1}+{a}\right)\left(\mathrm{2sin}\:\alpha\:\mathrm{cos}\:\alpha−\left(\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:\alpha\right)+\mathrm{1}\right) \\ $$$$\mathrm{2}\left({a}−\mathrm{cos}\:\mathrm{2}\alpha\right)=\left(\mathrm{1}+{a}\right)\left(\mathrm{sin}\:\mathrm{2}\alpha−\mathrm{cos}\:\mathrm{2}\alpha+\mathrm{1}\right) \\ $$$$\mathrm{2}{a}−\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\alpha=\left(\mathrm{1}+{a}\right)\:\mathrm{sin}\:\mathrm{2}\alpha−\left(\mathrm{1}+{a}\right)\:\mathrm{cos}\:\mathrm{2}\alpha+\left(\mathrm{1}+{a}\right) \\ $$$$\left({a}+\mathrm{1}\right)\:\mathrm{sin}\:\mathrm{2}\alpha−\left({a}−\mathrm{1}\right)\:\mathrm{cos}\:\mathrm{2}\alpha={a}−\mathrm{1} \\ $$$$\frac{{a}+\mathrm{1}}{\:\sqrt{\left({a}+\mathrm{1}\right)^{\mathrm{2}} +\left({a}−\mathrm{1}\right)^{\mathrm{2}} }}\:\mathrm{sin}\:\mathrm{2}\alpha−\frac{{a}−\mathrm{1}}{\:\sqrt{\left({a}+\mathrm{1}\right)^{\mathrm{2}} +\left({a}−\mathrm{1}\right)^{\mathrm{2}} }}\:\mathrm{cos}\:\mathrm{2}\alpha=\frac{{a}−\mathrm{1}}{\:\sqrt{\left({a}+\mathrm{1}\right)^{\mathrm{2}} +\left({a}−\mathrm{1}\right)^{\mathrm{2}} }} \\ $$$$\frac{{a}+\mathrm{1}}{\:\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}}\:\mathrm{sin}\:\mathrm{2}\alpha−\frac{{a}−\mathrm{1}}{\:\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}}\:\mathrm{cos}\:\mathrm{2}\alpha=\frac{{a}−\mathrm{1}}{\:\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}} \\ $$$$\mathrm{cos}\:\theta\:\mathrm{sin}\:\mathrm{2}\alpha−\mathrm{sin}\:\theta\:\mathrm{cos}\:\mathrm{2}\alpha=\mathrm{sin}\:\:\theta \\ $$$$\mathrm{sin}\:\left(\mathrm{2}\alpha−\theta\right)=\mathrm{sin}\:\theta \\ $$$$\Rightarrow\mathrm{2}\alpha−\theta=\theta \\ $$$$\Rightarrow\alpha=\theta=\mathrm{tan}^{−\mathrm{1}} \frac{{a}−\mathrm{1}}{{a}+\mathrm{1}} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\mathrm{cos}\:\theta=\frac{{a}+\mathrm{1}}{\:\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}} \\ $$$$\Rightarrow{R}=\frac{\mathrm{1}+{a}}{\mathrm{2}\:\mathrm{cos}\:\alpha}=\frac{\mathrm{1}+{a}}{\mathrm{2}×\frac{{a}+\mathrm{1}}{\:\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} +\mathrm{1}\right)}}}=\sqrt{\frac{{a}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}}} \\ $$
Commented by ajfour last updated on 08/Jul/18
$${Correct}\:{Sir},\:{thanks};\:{i}\:{thought} \\ $$$${you}\:{would}\:{make}\:{it}\:{shorter}\:{than} \\ $$$${my}\:{solution};\:{its}\:{almost}\:{the}\:{same} \\ $$$${length}. \\ $$
Answered by ajfour last updated on 08/Jul/18
$$\mathrm{2}{R}\mathrm{cos}\:\alpha\:=\:{a}+\mathrm{1} \\ $$$${R}\mathrm{sec}\:\alpha−\left({R}+{R}\mathrm{tan}\:\alpha\right)\mathrm{sin}\:\alpha\:=\:\mathrm{1} \\ $$$${From}\:{above}\:{two}\:{eqs}. \\ $$$$\frac{\mathrm{1}}{{R}}=\:\frac{\mathrm{2cos}\:\alpha}{{a}+\mathrm{1}}=\mathrm{sec}\:\alpha−\left(\mathrm{1}+\mathrm{tan}\:\alpha\right)\mathrm{sin}\:\alpha \\ $$$$\Rightarrow\:\frac{\mathrm{2cos}\:^{\mathrm{2}} \alpha}{{a}+\mathrm{1}}=\mathrm{1}−\mathrm{sin}\:\alpha\mathrm{cos}\:\alpha−\mathrm{sin}\:^{\mathrm{2}} \alpha \\ $$$$\Rightarrow\:\:\frac{\mathrm{2cos}\:^{\mathrm{2}} \alpha}{{a}+\mathrm{1}}=\mathrm{cos}\:\alpha\left(\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha\right) \\ $$$$\Rightarrow\:\:\frac{\mathrm{2cos}\:\alpha}{\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha}\:=\:{a}+\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:\frac{\mathrm{2}}{\mathrm{1}−\mathrm{tan}\:\alpha}\:=\:{a}+\mathrm{1} \\ $$$$\Rightarrow\:\:\:\:\mathrm{tan}\:\alpha\:=\:\mathrm{1}−\frac{\mathrm{2}}{{a}+\mathrm{1}}\:=\:\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\alpha\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}\right) \\ $$$$\:\:{R}\:=\:\frac{{a}+\mathrm{1}}{\mathrm{2cos}\:\alpha}\:=\frac{\left({a}+\mathrm{1}\right)\sqrt{\left({a}−\mathrm{1}\right)^{\mathrm{2}} +\left({a}+\mathrm{1}\right)^{\mathrm{2}} }}{\mathrm{2}\left({a}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:{R}\:=\:\sqrt{\frac{{a}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}}}\:\:. \\ $$
Commented by MrW3 last updated on 08/Jul/18
$${very}\:{nice}\:{sir}! \\ $$