Question Number 39649 by rahul 19 last updated on 09/Jul/18
Commented by rahul 19 last updated on 09/Jul/18
$$\mathrm{Given}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{block}\:\mathrm{A}\:\&\:\mathrm{C}\:=\:\mathrm{m} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{mass}\:\mathrm{of}\:\mathrm{block}\:\mathrm{B}\:=\:\mathrm{2m}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Spring}\:\mathrm{constant}\:=\:\mathrm{k}. \\ $$$$\mathrm{Find}\:\mathrm{acc}^{\mathrm{n}} \:\mathrm{of}\:\mathrm{the}\:\mathrm{blocks}\:\mathrm{A},\mathrm{B}\:\&\:\mathrm{C}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{instant}\:\mathrm{when}\:\mathrm{the}\:\mathrm{string}\:\mathrm{between}\:\mathrm{B\&C} \\ $$$$\mathrm{is}\:\mathrm{cut}? \\ $$
Answered by MrW3 last updated on 09/Jul/18
$${Before}\:{the}\:{cut}: \\ $$$${T}_{\mathrm{2}} ={m}_{{c}} {g}={mg} \\ $$$${T}_{\mathrm{1}} ={m}_{{b}} {g}+{T}_{\mathrm{2}} =\mathrm{3}{mg} \\ $$$${T}_{{k}} +{m}_{{a}} {g}={T}_{\mathrm{1}} \\ $$$$\Rightarrow{T}_{{k}} =\mathrm{2}{mg} \\ $$$$ \\ $$$${After}\:{the}\:{cut}: \\ $$$${T}_{\mathrm{2}} =\mathrm{0} \\ $$$${T}_{\mathrm{1}} −{m}_{{b}} {g}={m}_{{b}} {a} \\ $$$$\Rightarrow{T}_{\mathrm{1}} =\mathrm{2}{mg}+\mathrm{2}{ma} \\ $$$${T}_{{k}} +{m}_{{a}} {g}−{T}_{\mathrm{1}} ={m}_{{a}} {a} \\ $$$$\Rightarrow\mathrm{2}{mg}+{mg}−\mathrm{2}{mg}−\mathrm{2}{ma}={ma} \\ $$$$\Rightarrow{a}=\frac{{g}}{\mathrm{3}} \\ $$
Commented by rahul 19 last updated on 09/Jul/18
$$\mathrm{Sir},\:\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{why}\:\mathrm{after}\:\mathrm{the}\:\mathrm{cut}, \\ $$$$\mathrm{T}_{\mathrm{1}} \:\mathrm{and}\:\mathrm{T}_{\mathrm{k}} \:\mathrm{remains}\:\mathrm{same}\:?\:\mathrm{Why}\:\mathrm{not} \\ $$$$\mathrm{after}\:\mathrm{the}\:\mathrm{cut}\:\mathrm{new}\:\mathrm{tension}\:\mathrm{develops}? \\ $$
Commented by ajfour last updated on 09/Jul/18
$${since}\:{till}\:{just}\:{after}\:{cut}\:{spring}\:{extension} \\ $$$${has}\:{not}\:{changed}. \\ $$
Commented by rahul 19 last updated on 09/Jul/18
Thank you sir !
Commented by MrW3 last updated on 09/Jul/18
$${forces}\:{in}\:{strings}\:{and}\:{in}\:{springs} \\ $$$${will}\:{change}\:{when}\:{their}\:{deformation} \\ $$$${changes}\:{or}\:{when}\:{the}\:{acceleration}\:{of} \\ $$$${object}\:\:{changes}. \\ $$