Question Number 39666 by ajfour last updated on 09/Jul/18
Commented by ajfour last updated on 09/Jul/18
$${In}\:{terms}\:{of}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{\theta}\:,\:{find}\: \\ $$$$\:\boldsymbol{{x}},\:\boldsymbol{{y}},\:\boldsymbol{\alpha},\:\boldsymbol{\beta},\:{and}\:\boldsymbol{{r}}\:.\:\:\:\left({y}=\:{AD}\right) \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Jul/18
$$\mathrm{4}\theta=\alpha+\beta \\ $$$${sin}\alpha=\frac{\mathrm{1}}{{r}}\:\:\:{sin}\beta=\frac{{a}}{{r}} \\ $$$${cos}\left(\alpha+\beta\right)=\frac{\mathrm{2}{r}^{\mathrm{2}} −\left({a}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}{r}^{\mathrm{2}} } \\ $$$$\mathrm{2}{r}^{\mathrm{2}} {cos}\left(\mathrm{4}\theta\right)−\mathrm{2}{r}^{\mathrm{2}} =−\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{r}^{\mathrm{2}} \left(\mathrm{1}−{cos}\mathrm{4}\theta\right)=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{r}^{\mathrm{2}} ×\mathrm{2}{sin}^{\mathrm{2}} \mathrm{2}\theta=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{4}{r}^{\mathrm{2}} {sin}^{\mathrm{2}} \mathrm{2}\theta=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{rsin}\mathrm{2}\theta=\left({a}+\mathrm{1}\right) \\ $$$${r}=\frac{{a}+\mathrm{1}}{\mathrm{2}{sin}\mathrm{2}\theta} \\ $$$${sin}\alpha=\frac{\mathrm{1}}{{r}}=\frac{\mathrm{2}{sin}\mathrm{2}\theta}{{a}+\mathrm{1}} \\ $$$$\alpha={sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{sin}\mathrm{2}\theta}{{a}+\mathrm{1}}\right) \\ $$$${sin}\beta=\frac{{a}}{{r}}=\frac{{a}}{{a}+\mathrm{1}}×\mathrm{2}{sin}\mathrm{2}\left(\theta\right) \\ $$$$\beta.={sin}^{−\mathrm{1}} \left(\frac{{a}}{{a}+\mathrm{1}}.\mathrm{2}{sin}\left(\mathrm{2}\theta\right)\right\} \\ $$$$ \\ $$$$\frac{{x}}{{y}}=\frac{\mathrm{1}}{{a}}\:\:\:\:{so}\frac{{x}}{\mathrm{1}}=\frac{{y}}{{a}}{k}\:\:\:{x}={k}\:{and}\:{y}={ak} \\ $$$${cos}\mathrm{2}\theta=\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\left({a}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}{xy}} \\ $$$${cos}\mathrm{2}\theta=\frac{{k}^{\mathrm{2}} +{a}^{\mathrm{2}} {k}^{\mathrm{2}} −\left({a}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}{ak}^{\mathrm{2}} } \\ $$$${k}^{\mathrm{2}} +{a}^{\mathrm{2}} {k}^{\mathrm{2}} −\mathrm{2}{ak}^{\mathrm{2}} {cos}\mathrm{2}\theta=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${k}^{\mathrm{2}} \left(\mathrm{1}+{a}^{\mathrm{2}} −\mathrm{2}{acos}\mathrm{2}\theta\right)=\left({a}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${k}=\frac{{a}+\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}^{\mathrm{2}} −\mathrm{2}{acos}\mathrm{2}\theta}}\: \\ $$$${x}=\frac{{a}+\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}^{\mathrm{2}} −\mathrm{2}{acos}\mathrm{2}\theta}}\:\:\:{y}={a}×\frac{{a}+\mathrm{1}}{\:\sqrt{\mathrm{1}+{a}^{\mathrm{2}} −\mathrm{2}{acos}\mathrm{2}\theta}} \\ $$$$ \\ $$
Commented by ajfour last updated on 10/Jul/18
$$\mathscr{E}{xcellent},\:{Tanmay}\:{Sir}.\:{Thank}\:{you}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Jul/18
$${quality}\:{of}\:{questions}\:{you}\:{post}\:{really}\:{eye}\:{opener} \\ $$$${and}\:{activate}\:{sleeping}\:{cells}\:{of}\:{brain}\:{to}\:{get}\:{up} \\ $$$${and}\:{do}\:{work}… \\ $$