Question Number 39669 by rahul 19 last updated on 09/Jul/18
Answered by MrW3 last updated on 09/Jul/18
$${Before}\:{the}\:{support}\:{is}\:{removed}: \\ $$$${F}_{{k}} ={M}_{\mathrm{1}} {g}={force}\:{in}\:{spring} \\ $$$${F}_{{s}} =\left({M}_{\mathrm{1}} +{M}_{\mathrm{2}} \right){g}={contact}\:{force}\:{on}\:{support} \\ $$$${After}\:{the}\:{remove}\:{of}\:{the}\:{support}: \\ $$$${M}_{\mathrm{1}} {g}−{F}_{{k}} ={M}_{\mathrm{1}} {a}_{\mathrm{1}} \\ $$$${M}_{\mathrm{1}} {g}−{M}_{\mathrm{1}} {g}={M}_{\mathrm{1}} {a}_{\mathrm{1}} \\ $$$$\Rightarrow{a}_{\mathrm{1}} =\mathrm{0} \\ $$$$ \\ $$$${F}_{{k}} +{M}_{\mathrm{2}} {g}={M}_{\mathrm{2}} {a}_{\mathrm{2}} \\ $$$$\Rightarrow{M}_{\mathrm{1}} {g}+{M}_{\mathrm{2}} {g}={M}_{\mathrm{2}} {a}_{\mathrm{2}} \\ $$$$\Rightarrow{a}_{\mathrm{2}} =\left(\mathrm{1}+\frac{{M}_{\mathrm{1}} }{{M}_{\mathrm{2}} }\right){g}\:\left(\downarrow\right) \\ $$
Commented by rahul 19 last updated on 09/Jul/18
$$\mathrm{Is}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{initially}\:\mathrm{compressed}? \\ $$
Commented by MrW3 last updated on 09/Jul/18
$${yes}. \\ $$
Commented by rahul 19 last updated on 09/Jul/18
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}! \\ $$