Menu Close

Question-39669




Question Number 39669 by rahul 19 last updated on 09/Jul/18
Answered by MrW3 last updated on 09/Jul/18
Before the support is removed:  F_k =M_1 g=force in spring  F_s =(M_1 +M_2 )g=contact force on support  After the remove of the support:  M_1 g−F_k =M_1 a_1   M_1 g−M_1 g=M_1 a_1   ⇒a_1 =0    F_k +M_2 g=M_2 a_2   ⇒M_1 g+M_2 g=M_2 a_2   ⇒a_2 =(1+(M_1 /M_2 ))g (↓)
$${Before}\:{the}\:{support}\:{is}\:{removed}: \\ $$$${F}_{{k}} ={M}_{\mathrm{1}} {g}={force}\:{in}\:{spring} \\ $$$${F}_{{s}} =\left({M}_{\mathrm{1}} +{M}_{\mathrm{2}} \right){g}={contact}\:{force}\:{on}\:{support} \\ $$$${After}\:{the}\:{remove}\:{of}\:{the}\:{support}: \\ $$$${M}_{\mathrm{1}} {g}−{F}_{{k}} ={M}_{\mathrm{1}} {a}_{\mathrm{1}} \\ $$$${M}_{\mathrm{1}} {g}−{M}_{\mathrm{1}} {g}={M}_{\mathrm{1}} {a}_{\mathrm{1}} \\ $$$$\Rightarrow{a}_{\mathrm{1}} =\mathrm{0} \\ $$$$ \\ $$$${F}_{{k}} +{M}_{\mathrm{2}} {g}={M}_{\mathrm{2}} {a}_{\mathrm{2}} \\ $$$$\Rightarrow{M}_{\mathrm{1}} {g}+{M}_{\mathrm{2}} {g}={M}_{\mathrm{2}} {a}_{\mathrm{2}} \\ $$$$\Rightarrow{a}_{\mathrm{2}} =\left(\mathrm{1}+\frac{{M}_{\mathrm{1}} }{{M}_{\mathrm{2}} }\right){g}\:\left(\downarrow\right) \\ $$
Commented by rahul 19 last updated on 09/Jul/18
Is the spring initially compressed?
$$\mathrm{Is}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{initially}\:\mathrm{compressed}? \\ $$
Commented by MrW3 last updated on 09/Jul/18
yes.
$${yes}. \\ $$
Commented by rahul 19 last updated on 09/Jul/18
Thank you sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *