Menu Close

Question-39678




Question Number 39678 by ajfour last updated on 09/Jul/18
Commented by ajfour last updated on 09/Jul/18
△ABC is projection of an   equilateral △APQ. Find the   height p,q of vertices P and Q  above ground in terms of a,b,c.
$$\bigtriangleup{ABC}\:{is}\:{projection}\:{of}\:{an}\: \\ $$$${equilateral}\:\bigtriangleup{APQ}.\:{Find}\:{the}\: \\ $$$${height}\:{p},{q}\:{of}\:{vertices}\:{P}\:{and}\:{Q} \\ $$$${above}\:{ground}\:{in}\:{terms}\:{of}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}}. \\ $$
Answered by MrW3 last updated on 09/Jul/18
AP^2 =c^2 +p^2   AQ^2 =b^2 +q^2   PQ^2 =a^2 +(q−p)^2   since AP=AQ=PQ,  b^2 +q^2 =a^2 +(q−p)^2    ...(i)  ⇒b^2 =a^2 +p^2 −2pq  ⇒q=((a^2 −b^2 +p^2 )/(2p))  p^2 −q^2 =b^2 −c^2    ...(ii)  p^2 −(((a^2 −b^2 )^2 +p^4 +2(a^2 −b^2 )p^2 )/(4p^2 ))=b^2 −c^2   3p^4 −2(a^2 +b^2 −2c^2 )p^2 −(a^2 −b^2 )^2 =0  ⇒p^2 =(((a^2 +b^2 −2c^2 )+(√((a^2 +b^2 −2c^2 )^2 +3(a^2 −b^2 )^2 )))/3)  ⇒p=(√(((a^2 +b^2 −2c^2 )+(√((a^2 +b^2 −2c^2 )^2 +3(a^2 −b^2 )^2 )))/3))  ⇒q=(√(((a^2 +c^2 −2b^2 )+(√((a^2 +c^2 −2b^2 )^2 +3(a^2 −c^2 )^2 )))/3))
$${AP}^{\mathrm{2}} ={c}^{\mathrm{2}} +{p}^{\mathrm{2}} \\ $$$${AQ}^{\mathrm{2}} ={b}^{\mathrm{2}} +{q}^{\mathrm{2}} \\ $$$${PQ}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left({q}−{p}\right)^{\mathrm{2}} \\ $$$${since}\:{AP}={AQ}={PQ}, \\ $$$${b}^{\mathrm{2}} +{q}^{\mathrm{2}} ={a}^{\mathrm{2}} +\left({q}−{p}\right)^{\mathrm{2}} \:\:\:…\left({i}\right) \\ $$$$\Rightarrow{b}^{\mathrm{2}} ={a}^{\mathrm{2}} +{p}^{\mathrm{2}} −\mathrm{2}{pq} \\ $$$$\Rightarrow{q}=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{p}^{\mathrm{2}} }{\mathrm{2}{p}} \\ $$$${p}^{\mathrm{2}} −{q}^{\mathrm{2}} ={b}^{\mathrm{2}} −{c}^{\mathrm{2}} \:\:\:…\left({ii}\right) \\ $$$${p}^{\mathrm{2}} −\frac{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} +{p}^{\mathrm{4}} +\mathrm{2}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){p}^{\mathrm{2}} }{\mathrm{4}{p}^{\mathrm{2}} }={b}^{\mathrm{2}} −{c}^{\mathrm{2}} \\ $$$$\mathrm{3}{p}^{\mathrm{4}} −\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} \right){p}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{p}^{\mathrm{2}} =\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} \right)+\sqrt{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{3}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} }}{\mathrm{3}} \\ $$$$\Rightarrow{p}=\sqrt{\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} \right)+\sqrt{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{3}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} }}{\mathrm{3}}} \\ $$$$\Rightarrow{q}=\sqrt{\frac{\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} \right)+\sqrt{\left({a}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{3}\left({a}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)^{\mathrm{2}} }}{\mathrm{3}}} \\ $$
Commented by MrW3 last updated on 10/Jul/18
This is to say every triangle can be  projected from an equilateral triangle.
$${This}\:{is}\:{to}\:{say}\:{every}\:{triangle}\:{can}\:{be} \\ $$$${projected}\:{from}\:{an}\:{equilateral}\:{triangle}. \\ $$
Commented by ajfour last updated on 10/Jul/18
Very nicely handled Sir, cannot  be better! Thanks.
$${Very}\:{nicely}\:{handled}\:{Sir},\:{cannot} \\ $$$${be}\:{better}!\:{Thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *