Menu Close

Question-39737




Question Number 39737 by ajfour last updated on 10/Jul/18
Commented by ajfour last updated on 10/Jul/18
Sir,   I got R=(√(1+(1/( (√2)))))  .Please judge,  wrong or right!
$${Sir},\: \\ $$$${I}\:{got}\:{R}=\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}\:\:.{Please}\:{judge}, \\ $$$${wrong}\:{or}\:{right}! \\ $$
Commented by MJS last updated on 10/Jul/18
right!
$$\mathrm{right}! \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Jul/18
joinEA   EA^2 +AB^2 =4R_ ^2   AB=(√2) +FB  angleEAB=90^o    so angleEAD=90^o −45^o =45^o   let angle ABE=θ  sinθ=((EA)/(2R))   cosθ=((AB)/(2R))  angle DFB=135^o   so angle FDB=45^ −θ  continue...
$${joinEA}\:\:\:{EA}^{\mathrm{2}} +{AB}^{\mathrm{2}} =\mathrm{4}{R}_{} ^{\mathrm{2}} \\ $$$${AB}=\sqrt{\mathrm{2}}\:+{FB} \\ $$$${angleEAB}=\mathrm{90}^{{o}} \:\:\:{so}\:{angleEAD}=\mathrm{90}^{{o}} −\mathrm{45}^{{o}} =\mathrm{45}^{{o}} \\ $$$${let}\:{angle}\:{ABE}=\theta \\ $$$${sin}\theta=\frac{{EA}}{\mathrm{2}{R}}\:\:\:{cos}\theta=\frac{{AB}}{\mathrm{2}{R}} \\ $$$${angle}\:{DFB}=\mathrm{135}^{{o}} \:\:{so}\:{angle}\:{FDB}=\mathrm{45}^{} −\theta \\ $$$${continue}… \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Jul/18
cos(45−θ)=((1/2)/(CD))   CD=(1/(2cos(45−θ)))  trying ...
$${cos}\left(\mathrm{45}−\theta\right)=\frac{\frac{\mathrm{1}}{\mathrm{2}}}{{CD}}\:\:\:{CD}=\frac{\mathrm{1}}{\mathrm{2}{cos}\left(\mathrm{45}−\theta\right)} \\ $$$${trying}\:… \\ $$
Answered by MJS last updated on 10/Jul/18
C= ((0),(0) ) A= (((−(1/2))),((−p−1)) ) D= (((−(1/2))),((−p)) ) F= (((1/2)),((−p)) )  B∈l_(AF)  ∧ B∈l_(CD)   l_(AF) : y=x−((2p+1)/2)  l_(CD) : y=2px  ⇒ B= ((((2p+1)/(2(1−2p)))),(((p(2p+1))/(1−2p))) )  ∣A∣^2 =R^2   ∣B∣^2 =R^2   ⇒ p=−(1/2)+((√2)/2); R=(√(1+((√2)/2)))=((√2)/2)(√(2+(√2)))
$${C}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:{A}=\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}}\\{−{p}−\mathrm{1}}\end{pmatrix}\:{D}=\begin{pmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}}\\{−{p}}\end{pmatrix}\:{F}=\begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{2}}}\\{−{p}}\end{pmatrix} \\ $$$${B}\in{l}_{{AF}} \:\wedge\:{B}\in{l}_{{CD}} \\ $$$${l}_{{AF}} :\:{y}={x}−\frac{\mathrm{2}{p}+\mathrm{1}}{\mathrm{2}} \\ $$$${l}_{{CD}} :\:{y}=\mathrm{2}{px} \\ $$$$\Rightarrow\:{B}=\begin{pmatrix}{\frac{\mathrm{2}{p}+\mathrm{1}}{\mathrm{2}\left(\mathrm{1}−\mathrm{2}{p}\right)}}\\{\frac{{p}\left(\mathrm{2}{p}+\mathrm{1}\right)}{\mathrm{1}−\mathrm{2}{p}}}\end{pmatrix} \\ $$$$\mid{A}\mid^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\mid{B}\mid^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow\:{p}=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}};\:{R}=\sqrt{\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}} \\ $$
Commented by ajfour last updated on 10/Jul/18
Thank you, I like your way sir.
$${Thank}\:{you},\:{I}\:{like}\:{your}\:{way}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *