Question Number 39854 by ajfour last updated on 12/Jul/18
Commented by ajfour last updated on 12/Jul/18
$${Choose}\:{the}\:{correct}\:{options}: \\ $$$$\left({i}\right)\:{a}\approx\mathrm{1}.\mathrm{6}\:\:\:\:\:\:\:\:\:\:\left({ii}\right)\:\:{b}\approx\mathrm{2}.\mathrm{7} \\ $$$$\left({iii}\right)\:\:{a}\:\approx\:\mathrm{1}.\mathrm{8}\:\:\:\left({iv}\right)\:\:{b}\:\approx\:\mathrm{2}.\mathrm{4} \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Jul/18
$${every}\:{problem}\:{you}\:{post}\:{really}\:{praiseworthy} \\ $$$${you}\:{please}\:{repost}\:{those}\:{probems}\:{remain} \\ $$$${unsolved}\:{till}\:{dateso}\:{that}\:{we}\:{get}\:{option}\:. \\ $$$${to}\:{choose}.. \\ $$$$ \\ $$
Answered by MrW3 last updated on 12/Jul/18
$${let}\:{DT}={PB}={t} \\ $$$$\Rightarrow{TP}=\frac{\mathrm{1}}{{t}} \\ $$$$\Rightarrow{TA}={t}^{\mathrm{2}} \\ $$$${CP}=\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }} \\ $$$${CD}=\sqrt{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${CB}=\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}+{t} \\ $$$${CA}=\mathrm{1}+{t}^{\mathrm{2}} \\ $$$${CD}^{\mathrm{2}} +{CB}^{\mathrm{2}} ={CA}^{\mathrm{2}} \\ $$$$\mathrm{1}+{t}^{\mathrm{2}} +{t}^{\mathrm{2}} +\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }+\mathrm{2}{t}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}=\mathrm{1}+{t}^{\mathrm{4}} +\mathrm{2}{t}^{\mathrm{2}} \\ $$$$\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }+\mathrm{2}{t}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}={t}^{\mathrm{4}} \\ $$$$\Rightarrow{t}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}{t}^{\mathrm{2}} \sqrt{{t}^{\mathrm{2}} +\mathrm{1}}={t}^{\mathrm{6}} \\ $$$$\Rightarrow{t}\approx\mathrm{1}.\mathrm{499} \\ $$$$ \\ $$$${a}={CD}=\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\approx\mathrm{1}.\mathrm{802} \\ $$$${b}={CB}={t}+\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}=\approx\mathrm{2}.\mathrm{701} \\ $$
Commented by ajfour last updated on 12/Jul/18
$${Alright}\:{Sir},\:{thanks}\:'{gain}. \\ $$
Answered by ajfour last updated on 12/Jul/18
$${Let}\:\:\angle{CDP}\:=\:\angle{ACB}\:=\:\theta \\ $$$${As}\:\:\:\:\boldsymbol{{DT}}\:=\:\boldsymbol{{BP}} \\ $$$$\Rightarrow\:\:\:{a}\mathrm{cos}\:\theta\:=\:\frac{{a}}{\mathrm{tan}\:\theta}−{a}\mathrm{tan}\:\theta \\ $$$$\Rightarrow\:\:\:\mathrm{sin}\:\theta\mathrm{cos}\:^{\mathrm{2}} \theta\:=\:\mathrm{cos}\:^{\mathrm{2}} \theta−\mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$${let}\:\mathrm{sin}\:\theta\:=\:{x} \\ $$$$\Rightarrow\:\:\:{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)=\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{x}}+\mathrm{1}=\mathrm{0} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${let}\:{x}=\:{t}+\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow\:{t}^{\mathrm{3}} +\mathrm{2}{t}^{\mathrm{2}} +\frac{\mathrm{4}{t}}{\mathrm{3}}+\frac{\mathrm{8}}{\mathrm{27}}−\mathrm{2}{t}^{\mathrm{2}} −\frac{\mathrm{8}{t}}{\mathrm{3}}−\frac{\mathrm{24}}{\mathrm{27}} \\ $$$$\:\:\:\:\:\:\:−\frac{\mathrm{3}{t}}{\mathrm{3}}−\frac{\mathrm{18}}{\mathrm{27}}+\frac{\mathrm{27}}{\mathrm{27}}\:=\mathrm{0} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{3}} −\frac{\mathrm{7}{t}}{\mathrm{3}}−\frac{\mathrm{7}}{\mathrm{27}}=\mathrm{0} \\ $$$${let}\:\:{t}=\:{u}+{v} \\ $$$$\Rightarrow\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} +\left({u}+{v}\right)\left(\mathrm{3}{uv}−\frac{\mathrm{7}}{\mathrm{3}}\right)=\frac{\mathrm{7}}{\mathrm{27}} \\ $$$${let}\:\:\:{uv}\:=\:\frac{\mathrm{7}}{\mathrm{9}}\:\:\Rightarrow\:\:{u}^{\mathrm{3}} {v}^{\mathrm{3}} \:=\:\frac{\mathrm{343}}{\mathrm{729}} \\ $$$${and}\:\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} =\frac{\mathrm{7}}{\mathrm{27}} \\ $$$${u}^{\mathrm{3}} \:{and}\:{v}^{\mathrm{3}} \:{are}\:{then}\:{roots}\:{of} \\ $$$$\:\:\:\:\:\:{z}^{\mathrm{2}} −\frac{\mathrm{7}{z}}{\mathrm{27}}+\frac{\mathrm{343}}{\mathrm{729}}\:=\mathrm{0} \\ $$$$\:\:\:\:{z}\:=\:\frac{\frac{\mathrm{7}}{\mathrm{27}}\pm\sqrt{\frac{\mathrm{49}}{\mathrm{27}×\mathrm{27}}−\frac{\mathrm{1372}}{\mathrm{729}}}}{\mathrm{2}}\: \\ $$$$\:\:\:{t}=\:{u}+{v}\:\:\:\:\:\:\:\:\:\:\left({appropriate}\:{value}\:<\:\mathrm{0}\:\right) \\ $$$$\:{t}=\left(\frac{\mathrm{7}+{i}\sqrt{\mathrm{1323}}}{\mathrm{54}}\right)^{\mathrm{1}/\mathrm{3}} +\left(\frac{\mathrm{7}−{i}\sqrt{\mathrm{1323}}}{\mathrm{54}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$${let}\:\:{t}=\:{r}^{\mathrm{1}/\mathrm{3}} \left(\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:\:\:\:+{r}^{\mathrm{1}/\mathrm{3}} \left(\mathrm{cos}\:\theta−{i}\mathrm{sin}\:\theta\right)^{\mathrm{1}/\mathrm{3}} \\ $$$${where}\:\:\:{r}=\:\frac{\sqrt{\mathrm{49}+\mathrm{1323}}}{\mathrm{54}}\:=\frac{\sqrt{\mathrm{1372}}}{\mathrm{54}} \\ $$$$\:\:{r}\mathrm{cos}\:\theta\:=\:\frac{\mathrm{7}}{\mathrm{54}}\:\:\:\Rightarrow\:\mathrm{cos}\:\left(\mathrm{2}\pi−\theta\right)\:=\:\frac{\mathrm{7}}{\:\sqrt{\mathrm{1372}}} \\ $$$$\Rightarrow\:\:\:{x}\:={t}+\frac{\mathrm{2}}{\mathrm{3}}=\:\mathrm{2}{r}^{\mathrm{1}/\mathrm{3}} \mathrm{cos}\:\frac{\theta}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\:\:\:\:\boldsymbol{{x}}\:=\:\mathrm{2}\left(\frac{\sqrt{\mathrm{1372}}}{\mathrm{54}}\right)^{\mathrm{1}/\mathrm{3}} \mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{7}}{\:\sqrt{\mathrm{1372}}}\right)+\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\Rightarrow\:\:\:\boldsymbol{{x}}\approx\:\mathrm{0}.\mathrm{55496} \\ $$$$\:\boldsymbol{{a}}=\:\frac{\mathrm{1}}{\mathrm{sin}\:\boldsymbol{\theta}}\:=\frac{\mathrm{1}}{{x}}\:\approx\:\mathrm{1}.\mathrm{802} \\ $$$$\:\boldsymbol{{b}}=\boldsymbol{{a}}\mathrm{cot}\:\boldsymbol{\theta}\:=\:\boldsymbol{{a}}\sqrt{\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} \boldsymbol{\theta}}−\mathrm{1}} \\ $$$$\:\:\:\:\approx\:\mathrm{1}.\mathrm{802}×\sqrt{\frac{\mathrm{1}}{\left(\mathrm{0}.\mathrm{55496}\right)^{\mathrm{2}} }−\mathrm{1}} \\ $$$$\Rightarrow\:\:\:\boldsymbol{{b}}\:\approx\:\mathrm{2}.\mathrm{701}\:. \\ $$