Menu Close

Question-40231




Question Number 40231 by Raj Singh last updated on 17/Jul/18
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18
((cosA−sinA+1)/(cosA+sinA−1))  a=sinA   b=cosA    a^2 +b^2 =1  (((b−a+1)(b+a+1))/((b+a−1)(b+a+1)))  =(((b+1)^2 −a^2 )/((b+a)^2 −1))  =((b^2 +2b+1−a^2 )/(b^2 +2ab+a^2 −1))  =((b^2 +2b+b^2 )/(2ab))  =((2b(b+1))/(2ab))  =((b+1)/a)=(b/a)+(1/a)=cotA+cosecA
$$\frac{{cosA}−{sinA}+\mathrm{1}}{{cosA}+{sinA}−\mathrm{1}} \\ $$$${a}={sinA}\:\:\:{b}={cosA}\:\:\:\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{1} \\ $$$$\frac{\left({b}−{a}+\mathrm{1}\right)\left({b}+{a}+\mathrm{1}\right)}{\left({b}+{a}−\mathrm{1}\right)\left({b}+{a}+\mathrm{1}\right)} \\ $$$$=\frac{\left({b}+\mathrm{1}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} }{\left({b}+{a}\right)^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\frac{{b}^{\mathrm{2}} +\mathrm{2}{b}+\mathrm{1}−{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} +\mathrm{2}{ab}+{a}^{\mathrm{2}} −\mathrm{1}} \\ $$$$=\frac{{b}^{\mathrm{2}} +\mathrm{2}{b}+{b}^{\mathrm{2}} }{\mathrm{2}{ab}} \\ $$$$=\frac{\mathrm{2}{b}\left({b}+\mathrm{1}\right)}{\mathrm{2}{ab}} \\ $$$$=\frac{{b}+\mathrm{1}}{{a}}=\frac{{b}}{{a}}+\frac{\mathrm{1}}{{a}}={cotA}+{cosecA} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Raj Singh last updated on 17/Jul/18
thank you
$${thank}\:{you} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18
its ok....
$${its}\:{ok}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *