Question Number 40581 by ajfour last updated on 24/Jul/18
Commented by ajfour last updated on 24/Jul/18
$${Find}\:{radius}\:{of}\:{inscribed}\:{sphere} \\ $$$${which}\:{is}\:{tangent}\:{to}\:{all}\:{faces}\:{of} \\ $$$${the}\:{triangular}\:{pyramid}. \\ $$
Commented by ajfour last updated on 24/Jul/18
$${See}\:{Q}.\mathrm{40594}\:\:{for}\:{an}\:{alternate}\:{solution}. \\ $$
Answered by MrW3 last updated on 24/Jul/18
$${height}\:{of}\:{pyramid}: \\ $$$${h}=\sqrt{{b}^{\mathrm{2}} −\left(\frac{\mathrm{2}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}\right)^{\mathrm{2}} }=\sqrt{{b}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{3}}} \\ $$$${V}=\frac{\mathrm{1}}{\mathrm{3}}×\frac{{a}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}×\sqrt{{b}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{3}}}=\frac{{a}^{\mathrm{2}} \sqrt{\mathrm{3}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{\mathrm{12}} \\ $$$${S}=\frac{{a}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}+\mathrm{3}×\frac{{a}}{\mathrm{2}}×\sqrt{{b}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}=\frac{{a}\left(\sqrt{\mathrm{3}}{a}+\mathrm{3}\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right)}{\mathrm{4}} \\ $$$$\Rightarrow{r}=\frac{\mathrm{3}{V}}{{S}}=\frac{{a}\sqrt{\mathrm{3}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{\:\sqrt{\mathrm{3}}{a}+\mathrm{3}\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }} \\ $$
Commented by MrW3 last updated on 24/Jul/18
$${Let}\:{M}\:{be}\:{the}\:{center}\:{of}\:{the}\:{sphere}.\:{M} \\ $$$${has}\:{the}\:{same}\:{distance}\:\:{r}\:{to}\:{all}\:{faces}\:{of} \\ $$$${the}\:{pyramid}.\:{The}\:{big}\:{pyramid}\:{can}\:{be} \\ $$$${divided}\:{into}\:\mathrm{4}\:{small}\:{ones}: \\ $$$${M\_ABC}\:{with}\:{V}_{\mathrm{1}} =\frac{{r}}{\mathrm{3}}{A}_{\Delta{ABC}} \\ $$$${M\_ABD}\:{with}\:{V}_{\mathrm{2}} =\frac{{r}}{\mathrm{3}}{A}_{\Delta{ABD}} \\ $$$${M\_ACD}\:{with}\:{V}_{\mathrm{3}} =\frac{{r}}{\mathrm{3}}{A}_{\Delta{ACD}} \\ $$$${M\_BCD}\:{with}\:{V}_{\mathrm{4}} =\frac{{r}}{\mathrm{3}}{A}_{\Delta{BCD}} \\ $$$${V}={V}_{\mathrm{1}} +{V}_{\mathrm{2}} +{V}_{\mathrm{3}} +{V}_{\mathrm{4}} =\frac{{r}}{\mathrm{3}}\left({A}_{\Delta{ABC}} +…\right)=\frac{{rS}}{\mathrm{3}} \\ $$$${with}\:{S}={surface}\:{of}\:{pyramid} \\ $$$$\Rightarrow{r}=\frac{\mathrm{3}{V}}{{S}} \\ $$
Commented by ajfour last updated on 24/Jul/18
$${what}\:{is}\:{S}\:,\:{sir}\:{and}\:{how}\:{r}=\frac{\mathrm{3}{V}}{{S}}\:? \\ $$
Commented by MrW3 last updated on 24/Jul/18
Commented by MrW3 last updated on 24/Jul/18
$${When}\:{we}\:{know}\:{the}\:{area}\:{and}\:{perimeter} \\ $$$${of}\:{a}\:{triangle}\:{then}\:{we}\:{can}\:{get}\:{the}\:{radius} \\ $$$${of}\:{its}\:{inscribed}\:{circle}: \\ $$$$\frac{{rP}}{\mathrm{2}}={A}\Rightarrow{r}=\frac{\mathrm{2}{A}}{{P}} \\ $$$${I}\:{used}\:{this}\:{method}\:{for}\:{calculating} \\ $$$${the}\:{radius}\:{of}\:{inscribed}\:{sphere}. \\ $$
Commented by ajfour last updated on 24/Jul/18
$${Understood}\:{Sir},\:{thanks};\:{its}\:{the}\:{best} \\ $$$${way}\:{to}\:{arrive}\:{at}\:{the}\:{answer}. \\ $$
Commented by MrW3 last updated on 24/Jul/18
$${If}\:{we}\:{should}\:{determine}\:{the}\:{radius}\:{of} \\ $$$${the}\:{inscribed}\:{sphere}\:{of}\:{a}\:{triangular} \\ $$$${pyramid}\:{with}\:{sides}\:\boldsymbol{{a}},\boldsymbol{{b}},\boldsymbol{{c}},\boldsymbol{{p}},\boldsymbol{{q}},\boldsymbol{{r}},\:{then} \\ $$$${this}\:{method}\:{should}\:{be}\:{the}\:{easiest}\:{one}. \\ $$