Menu Close

Question-40594




Question Number 40594 by ajfour last updated on 24/Jul/18
Commented by ajfour last updated on 24/Jul/18
Solution to Q.40581
$${Solution}\:{to}\:{Q}.\mathrm{40581} \\ $$
Answered by ajfour last updated on 24/Jul/18
l=(√(b^2 −(a^2 /4))) =((√(4b^2 −a^2 ))/2)  TM=rcot θ = (a/2)tan 30° = lcos 2θ  ⇒  cos 2θ = (a/(2(√3)l))  cot θ =(√((1+cos 2θ)/(1−cos 2θ))) =(√((1+(a/(2(√3)l)))/(1−(a/(2(√3)l)))))  r=(a/(2(√3)cot θ))=(a/(2(√3)))(√((1−(a/(2(√3)l)))/(1+(a/(2(√3)l)))))  r=(a/(2(√3)))(√((2(√3)l−a)/(2(√3)l+a))) =(a/(2(√3)))(((2(√3)l−a)/( (√(12l^2 −a^2 )))))   r= (a/(2(√3)))((((√3)(√(4b^2 −a^2 ))−a)/( (√(12b^2 −3a^2 −a^2 )))))  ⇒  r=(a/(4(√3)))[(((√3)(√(4b^2 −a^2 ))−a)/( (√(3b^2 −a^2 ))))]   same as   r=(a/(4(√3)))[((3(4b^2 −a^2 )−a^2 )/( (√(3b^2 −a^2 ))))]((1/( (√3)(√(4b^2 −a^2 ))+a)))    =((a(√(3b^2 −a^2 )))/(3(√(4b^2 −a^2 ))+a(√3))) .
$${l}=\sqrt{{b}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\:=\frac{\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${TM}={r}\mathrm{cot}\:\theta\:=\:\frac{{a}}{\mathrm{2}}\mathrm{tan}\:\mathrm{30}°\:=\:{l}\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\Rightarrow\:\:\mathrm{cos}\:\mathrm{2}\theta\:=\:\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}{l}} \\ $$$$\mathrm{cot}\:\theta\:=\sqrt{\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta}}\:=\sqrt{\frac{\mathrm{1}+\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}{l}}}{\mathrm{1}−\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}{l}}}} \\ $$$${r}=\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}\mathrm{cot}\:\theta}=\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\sqrt{\frac{\mathrm{1}−\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}{l}}}{\mathrm{1}+\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}{l}}}} \\ $$$$\boldsymbol{{r}}=\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\sqrt{\frac{\mathrm{2}\sqrt{\mathrm{3}}{l}−{a}}{\mathrm{2}\sqrt{\mathrm{3}}{l}+{a}}}\:=\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\left(\frac{\mathrm{2}\sqrt{\mathrm{3}}{l}−{a}}{\:\sqrt{\mathrm{12}{l}^{\mathrm{2}} −{a}^{\mathrm{2}} }}\right) \\ $$$$\:{r}=\:\frac{{a}}{\mathrm{2}\sqrt{\mathrm{3}}}\left(\frac{\sqrt{\mathrm{3}}\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }−{a}}{\:\sqrt{\mathrm{12}{b}^{\mathrm{2}} −\mathrm{3}{a}^{\mathrm{2}} −{a}^{\mathrm{2}} }}\right) \\ $$$$\Rightarrow\:\:{r}=\frac{{a}}{\mathrm{4}\sqrt{\mathrm{3}}}\left[\frac{\sqrt{\mathrm{3}}\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }−{a}}{\:\sqrt{\mathrm{3}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }}\right]\: \\ $$$${same}\:{as} \\ $$$$\:{r}=\frac{{a}}{\mathrm{4}\sqrt{\mathrm{3}}}\left[\frac{\mathrm{3}\left(\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} }{\:\sqrt{\mathrm{3}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }}\right]\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }+{a}}\right) \\ $$$$\:\:=\frac{{a}\sqrt{\mathrm{3}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{\mathrm{3}\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }+{a}\sqrt{\mathrm{3}}}\:. \\ $$
Commented by MrW3 last updated on 24/Jul/18
you′r answer is correct sir.  ⇒  r=(a/(4(√3)))[(((√3)(√(4b^2 −a^2 ))−a)/( (√(3b^2 −a^2 ))))]×(((√3)(√(4b^2 −a^2 ))+a)/( (√3)(√(4b^2 −a^2 ))+a))  ⇒  r=(a/( (√3)))[((3b^2 −a^2 )/( (√(3b^2 −a^2 ))))]×(1/( (√3)(√(4b^2 −a^2 ))+a))  ⇒  r=((a(√(3b^2 −a^2 )))/( (√3)a+3(√(4b^2 −a^2 ))))  this is the same as my answer.
$${you}'{r}\:{answer}\:{is}\:{correct}\:{sir}. \\ $$$$\Rightarrow\:\:{r}=\frac{{a}}{\mathrm{4}\sqrt{\mathrm{3}}}\left[\frac{\sqrt{\mathrm{3}}\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }−{a}}{\:\sqrt{\mathrm{3}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }}\right]×\frac{\sqrt{\mathrm{3}}\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }+{a}}{\:\sqrt{\mathrm{3}}\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }+{a}} \\ $$$$\Rightarrow\:\:{r}=\frac{{a}}{\:\sqrt{\mathrm{3}}}\left[\frac{\mathrm{3}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\:\sqrt{\mathrm{3}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }}\right]×\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }+{a}} \\ $$$$\Rightarrow\:\:{r}=\frac{{a}\sqrt{\mathrm{3}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{\:\sqrt{\mathrm{3}}{a}+\mathrm{3}\sqrt{\mathrm{4}{b}^{\mathrm{2}} −{a}^{\mathrm{2}} }} \\ $$$${this}\:{is}\:{the}\:{same}\:{as}\:{my}\:{answer}. \\ $$
Commented by ajfour last updated on 24/Jul/18
i′ve even matched it myself, Sir.  thanks for the care.
$${i}'{ve}\:{even}\:{matched}\:{it}\:{myself},\:{Sir}. \\ $$$${thanks}\:{for}\:{the}\:{care}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *