Menu Close

Question-40610




Question Number 40610 by ajfour last updated on 24/Jul/18
Answered by MJS last updated on 25/Jul/18
easy to understand with 4+1 spheres  let radius of the spheres = 1  the angle of the side of the cone is 45°  its radius=height is 1+2(√2)  (cut through the centers of 2 opposite bottom  spheres and the top sphere, it′s easy to see)  volume=((25+22(√2))/3)π    v(R)=((25+22(√2))/3)πR^3     now someone please try with 3+1 and 5+1 spheres!
$$\mathrm{easy}\:\mathrm{to}\:\mathrm{understand}\:\mathrm{with}\:\mathrm{4}+\mathrm{1}\:\mathrm{spheres} \\ $$$$\mathrm{let}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{spheres}\:=\:\mathrm{1} \\ $$$$\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{the}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cone}\:\mathrm{is}\:\mathrm{45}° \\ $$$$\mathrm{its}\:\mathrm{radius}=\mathrm{height}\:\mathrm{is}\:\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\left(\mathrm{cut}\:\mathrm{through}\:\mathrm{the}\:\mathrm{centers}\:\mathrm{of}\:\mathrm{2}\:\mathrm{opposite}\:\mathrm{bottom}\right. \\ $$$$\left.\mathrm{spheres}\:\mathrm{and}\:\mathrm{the}\:\mathrm{top}\:\mathrm{sphere},\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\right) \\ $$$$\mathrm{volume}=\frac{\mathrm{25}+\mathrm{22}\sqrt{\mathrm{2}}}{\mathrm{3}}\pi \\ $$$$ \\ $$$${v}\left({R}\right)=\frac{\mathrm{25}+\mathrm{22}\sqrt{\mathrm{2}}}{\mathrm{3}}\pi{R}^{\mathrm{3}} \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{someone}\:\mathrm{please}\:\mathrm{try}\:\mathrm{with}\:\mathrm{3}+\mathrm{1}\:\mathrm{and}\:\mathrm{5}+\mathrm{1}\:\mathrm{spheres}! \\ $$
Commented by ajfour last updated on 25/Jul/18
Commented by ajfour last updated on 25/Jul/18
Yes Sir, correct answer.  V=(((1+2(√2))^3 πR^3 )/3) .
$${Yes}\:{Sir},\:{correct}\:{answer}. \\ $$$${V}=\frac{\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{3}} \pi{R}^{\mathrm{3}} }{\mathrm{3}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *