Question Number 40625 by Raj Singh last updated on 25/Jul/18
Answered by MJS last updated on 25/Jul/18
$$\int\frac{{dx}}{\:\sqrt{{x}}+\sqrt[{\mathrm{3}}]{{x}}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt[{\mathrm{6}}]{{x}}\:\rightarrow\:{dx}=\mathrm{6}\sqrt[{\mathrm{6}}]{{x}^{\mathrm{5}} }{dt}\right] \\ $$$$=\mathrm{6}\int\frac{{t}^{\mathrm{3}} }{{t}+\mathrm{1}}{dt}=\mathrm{6}\int\left({t}^{\mathrm{2}} −{t}+\mathrm{1}−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right){dt}= \\ $$$$=\mathrm{6}\left(\frac{\mathrm{1}}{\mathrm{3}}{t}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} +{t}−\mathrm{ln}\:\left({t}+\mathrm{1}\right)\right)= \\ $$$$=\mathrm{2}{t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} +\mathrm{6}{t}−\mathrm{6ln}\:\left({t}+\mathrm{1}\right)= \\ $$$$=\mathrm{2}\sqrt{{x}}−\mathrm{3}\sqrt[{\mathrm{3}}]{{x}}+\mathrm{6}\sqrt[{\mathrm{6}}]{{x}}−\mathrm{6ln}\:\left(\mathrm{1}+\sqrt[{\mathrm{6}}]{{x}}\right)\:+{C} \\ $$
Commented by MJS last updated on 25/Jul/18
$$…\mathrm{now}\:\mathrm{try} \\ $$$$\int\frac{{dx}}{\:\sqrt{{x}}+\sqrt[{\mathrm{5}}]{{x}}}\:\mathrm{and}\:\int\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{5}}]{{x}}} \\ $$
Answered by Joel578 last updated on 25/Jul/18
$${x}\:=\:{t}^{\mathrm{6}} \:\:\rightarrow\:\:{dx}\:=\:\mathrm{6}{t}^{\mathrm{5}} \:{dt} \\ $$$${I}\:=\:\int\:\frac{\mathrm{6}{t}^{\mathrm{5}} }{{t}^{\mathrm{3}} \:+\:{t}^{\mathrm{2}} }\:{dt}\:=\:\int\:\frac{\mathrm{6}{t}^{\mathrm{3}} }{{t}\:+\:\mathrm{1}}\:{dt} \\ $$$$\:\:\:\:=\:\int\:\left(\mathrm{6}{t}^{\mathrm{2}} \:−\:\mathrm{6}{t}\:−\:\frac{\mathrm{6}}{{t}\:+\:\mathrm{1}}\:+\:\mathrm{6}\right)\:{dt} \\ $$$$\:\:\:\:=\:\mathrm{2}{t}^{\mathrm{3}} \:−\:\mathrm{3}{t}^{\mathrm{2}} \:−\:\mathrm{6}\:\mathrm{ln}\:\mid{t}\:+\:\mathrm{1}\mid\:+\:\mathrm{6}{t}\:+\:{C} \\ $$$$\:\:\:\:=\:\mathrm{2}{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \:−\:\mathrm{3}{x}^{\frac{\mathrm{1}}{\mathrm{3}}} \:−\:\mathrm{6}\:\mathrm{ln}\:\mid{x}^{\frac{\mathrm{1}}{\mathrm{6}}} \:+\:\mathrm{1}\mid\:+\:\mathrm{6}{x}^{\frac{\mathrm{1}}{\mathrm{6}}} \:+\:{C} \\ $$