Menu Close

Question-40625




Question Number 40625 by Raj Singh last updated on 25/Jul/18
Answered by MJS last updated on 25/Jul/18
∫(dx/( (√x)+(x)^(1/3) ))=       [t=(x)^(1/6)  → dx=6(x^5 )^(1/6) dt]  =6∫(t^3 /(t+1))dt=6∫(t^2 −t+1−(1/(t+1)))dt=  =6((1/3)t^3 −(1/2)t^2 +t−ln (t+1))=  =2t^3 −3t^2 +6t−6ln (t+1)=  =2(√x)−3(x)^(1/3) +6(x)^(1/6) −6ln (1+(x)^(1/6) ) +C
$$\int\frac{{dx}}{\:\sqrt{{x}}+\sqrt[{\mathrm{3}}]{{x}}}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt[{\mathrm{6}}]{{x}}\:\rightarrow\:{dx}=\mathrm{6}\sqrt[{\mathrm{6}}]{{x}^{\mathrm{5}} }{dt}\right] \\ $$$$=\mathrm{6}\int\frac{{t}^{\mathrm{3}} }{{t}+\mathrm{1}}{dt}=\mathrm{6}\int\left({t}^{\mathrm{2}} −{t}+\mathrm{1}−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right){dt}= \\ $$$$=\mathrm{6}\left(\frac{\mathrm{1}}{\mathrm{3}}{t}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} +{t}−\mathrm{ln}\:\left({t}+\mathrm{1}\right)\right)= \\ $$$$=\mathrm{2}{t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} +\mathrm{6}{t}−\mathrm{6ln}\:\left({t}+\mathrm{1}\right)= \\ $$$$=\mathrm{2}\sqrt{{x}}−\mathrm{3}\sqrt[{\mathrm{3}}]{{x}}+\mathrm{6}\sqrt[{\mathrm{6}}]{{x}}−\mathrm{6ln}\:\left(\mathrm{1}+\sqrt[{\mathrm{6}}]{{x}}\right)\:+{C} \\ $$
Commented by MJS last updated on 25/Jul/18
...now try  ∫(dx/( (√x)+(x)^(1/5) )) and ∫(dx/( (x)^(1/3) +(x)^(1/5) ))
$$…\mathrm{now}\:\mathrm{try} \\ $$$$\int\frac{{dx}}{\:\sqrt{{x}}+\sqrt[{\mathrm{5}}]{{x}}}\:\mathrm{and}\:\int\frac{{dx}}{\:\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{5}}]{{x}}} \\ $$
Answered by Joel578 last updated on 25/Jul/18
x = t^6   →  dx = 6t^5  dt  I = ∫ ((6t^5 )/(t^3  + t^2 )) dt = ∫ ((6t^3 )/(t + 1)) dt      = ∫ (6t^2  − 6t − (6/(t + 1)) + 6) dt      = 2t^3  − 3t^2  − 6 ln ∣t + 1∣ + 6t + C      = 2x^(1/2)  − 3x^(1/3)  − 6 ln ∣x^(1/6)  + 1∣ + 6x^(1/6)  + C
$${x}\:=\:{t}^{\mathrm{6}} \:\:\rightarrow\:\:{dx}\:=\:\mathrm{6}{t}^{\mathrm{5}} \:{dt} \\ $$$${I}\:=\:\int\:\frac{\mathrm{6}{t}^{\mathrm{5}} }{{t}^{\mathrm{3}} \:+\:{t}^{\mathrm{2}} }\:{dt}\:=\:\int\:\frac{\mathrm{6}{t}^{\mathrm{3}} }{{t}\:+\:\mathrm{1}}\:{dt} \\ $$$$\:\:\:\:=\:\int\:\left(\mathrm{6}{t}^{\mathrm{2}} \:−\:\mathrm{6}{t}\:−\:\frac{\mathrm{6}}{{t}\:+\:\mathrm{1}}\:+\:\mathrm{6}\right)\:{dt} \\ $$$$\:\:\:\:=\:\mathrm{2}{t}^{\mathrm{3}} \:−\:\mathrm{3}{t}^{\mathrm{2}} \:−\:\mathrm{6}\:\mathrm{ln}\:\mid{t}\:+\:\mathrm{1}\mid\:+\:\mathrm{6}{t}\:+\:{C} \\ $$$$\:\:\:\:=\:\mathrm{2}{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \:−\:\mathrm{3}{x}^{\frac{\mathrm{1}}{\mathrm{3}}} \:−\:\mathrm{6}\:\mathrm{ln}\:\mid{x}^{\frac{\mathrm{1}}{\mathrm{6}}} \:+\:\mathrm{1}\mid\:+\:\mathrm{6}{x}^{\frac{\mathrm{1}}{\mathrm{6}}} \:+\:{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *