Question Number 40662 by Tinkutara last updated on 25/Jul/18
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Jul/18
$${pls}\:{check}\:{the}\:{question}…{it}\:{seems}\:{wrong}… \\ $$
Commented by maxmathsup by imad last updated on 25/Jul/18
$${if}\:{y}_{\mathrm{1}} {means}\:{derivative}\:{let}\:{w}\left({x}\right)=\frac{\sqrt{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} }}{\mathrm{2}}{y}\left({x}\right)\Rightarrow{w}\left({x}\right)={arctan}\left(\frac{{a}−{b}}{{a}+{b}}{tan}\left(\frac{{x}}{\mathrm{2}}\right)\right) \\ $$$$\Rightarrow{w}^{'} \left({x}\right)=\frac{\frac{{a}−{b}}{\mathrm{2}\left({a}+{b}\right)}\left\{\mathrm{1}+{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right\}}{\mathrm{1}+\frac{\left({a}−{b}\right)^{\mathrm{2}} }{\left({a}+{b}\right)^{\mathrm{2}} }{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}\:=\frac{\left({a}−{b}\right)}{\mathrm{2}\left({a}+{b}\right){cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\left\{\frac{\left({a}+{b}\right)^{\mathrm{2}} \:+\left({a}−{b}\right)^{\mathrm{2}} {tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{\left({a}+{b}\right)^{\mathrm{2}} }\right\}} \\ $$$$=\frac{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} }{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\left\{\left({a}+{b}\right)^{\mathrm{2}} \:+\left({a}−{b}\right)^{\mathrm{2}} \left(\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}−\mathrm{1}\right)\right\}} \\ $$$$=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}\:{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\left\{\left({a}+{b}\right)^{\mathrm{2}} {cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\:+\left({a}−{b}\right)^{\mathrm{2}} \left(\mathrm{1}−{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\right)\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}\right.} \\ $$$$=\:\frac{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} }{\mathrm{2}\left\{\:\:\left(\:\left({a}+{b}\right)^{\mathrm{2}} −\left({a}−{b}^{\mathrm{2}} \right)\right){cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\:+\left({a}−{b}\right)^{\mathrm{2}} \right\}} \\ $$$$=\frac{{a}^{\mathrm{2}} \:−{b}^{\mathrm{2}} }{\mathrm{2}\left\{\:\:\mathrm{4}{ab}\:{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\:+\left({a}−{b}\right)^{\mathrm{2}} \right\}}\:=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{4}{ab}\left(\mathrm{1}+{cosx}\right)\:+\mathrm{2}\left({a}^{\mathrm{2}} −\mathrm{2}{ab}\:+{b}^{\mathrm{2}} \right)} \\ $$$$=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{4}{ab}\:{cosx}\:+\mathrm{2}{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} }\:=\:\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\mathrm{2}\left({a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \:+\mathrm{2}{ab}\:{cosx}\right)}\:\Rightarrow \\ $$$${y}^{\left(\mathrm{1}\right)} \left({x}\right)\:=\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{w}^{'} \left({x}\right)\:=\:\frac{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{{a}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \:+\mathrm{2}{ab}\:{cosx}}\:\:{so}\:{something}\:{went}\:{wrong}\:{in}\:{the} \\ $$$${question}… \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 26/Jul/18
$${i}\:{think}\:{the}\:{true}\:{question}\:{is}\: \\ $$$${y}=\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }}{tan}^{−\mathrm{1}} \left(\sqrt{\frac{{a}−{b}}{{a}+{b}}}\:\:{tan}\frac{{x}}{\mathrm{2}}\right) \\ $$$${and}\:{answer}\:{is}\:{option}\:{b}\:\:{y}_{\mathrm{2}} =\frac{{bsinx}}{\left({a}+{bcosx}\right)^{\mathrm{2}} } \\ $$$${which}\:{i}\:{have}\:{already}\:{proved}… \\ $$
Commented by Tinkutara last updated on 27/Jul/18
Thanks Sir imad.
Commented by math khazana by abdo last updated on 28/Jul/18
$${you}\:{are}\:{welcome}\:{sir}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jul/18
Commented by Tinkutara last updated on 25/Jul/18
Sir no option matching?
Commented by tanmay.chaudhury50@gmail.com last updated on 26/Jul/18
$${y}_{\mathrm{1}} =\frac{\mathrm{1}}{{a}+{bcosx}} \\ $$$${y}_{\mathrm{2}} =−\frac{\mathrm{1}}{\left({a}+{bcosx}\right)^{\mathrm{2}} }×\frac{{d}}{{dx}}\left({a}+{bcosx}\right) \\ $$$$=\frac{−\mathrm{1}}{\left({a}+{bcosx}\right)^{\mathrm{2}} }×\left(−{bsinx}\right)\: \\ $$$$=\frac{{bsinx}}{\left({a}+{bcosx}\right)^{\mathrm{2}} } \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 26/Jul/18
$${y}_{\mathrm{1}} =\frac{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{abcosx}} \\ $$$${y}_{\mathrm{2}} =\left(−\mathrm{1}\right)\frac{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:}{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{abcosx}\right)^{\mathrm{2}} }×\frac{{d}}{{dx}}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{abcosx}\right) \\ $$$$=\frac{\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:×\left(−\mathrm{2}{absinx}\right)}{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{abcosx}\right)^{\mathrm{2}} }×\left(−\mathrm{1}\right) \\ $$$$=\frac{\left(\sqrt{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:\right)\left(\mathrm{2}{absinx}\right)}{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{abcosx}\right)^{\mathrm{2}} } \\ $$
Commented by Tinkutara last updated on 27/Jul/18
Thank you very much Sir! I got the answer.