Menu Close

Question-40675




Question Number 40675 by Raj Singh last updated on 26/Jul/18
Commented by math khazana by abdo last updated on 30/Jul/18
let I = ∫     (dx/(2sinx +cosx +3)) cha7gement  tan((x/2))=t give  I   = ∫     (1/(2((2t)/(1+t^2 )) +((1−t^2 )/(1+t^2 )) +3)) ((2dt)/(1+t^2 ))  = ∫      ((2dt)/(4t +1−t^2 +3+3t^2 )) = ∫   ((2dt)/(2t^2  +4t +4))  =∫   (dt/(t^2  +2t +2)) =∫  (dt/((t+1)^2  +1))  =_(t+1 =tanθ)   ∫    (((1+tan^2 θ)dθ)/(1+tan^2 θ)) =θ +c  =arctan(1+t) +c  =arctan(1+tan((x/2))) +c .
letI=dx2sinx+cosx+3cha7gementtan(x2)=tgiveI=122t1+t2+1t21+t2+32dt1+t2=2dt4t+1t2+3+3t2=2dt2t2+4t+4=dtt2+2t+2=dt(t+1)2+1=t+1=tanθ(1+tan2θ)dθ1+tan2θ=θ+c=arctan(1+t)+c=arctan(1+tan(x2))+c.
Commented by math khazana by abdo last updated on 30/Jul/18
sir Raj i think the Q is prove not solve...
sirRajithinktheQisprovenotsolve
Answered by tanmay.chaudhury50@gmail.com last updated on 26/Jul/18
∫(dx/(2sinx+cosx+3))  let t=tan(x/2)   dt=sec^2 (x/2)×(1/2)dx  ((2dt)/(1+t^2 ))=dx  ∫((2dt)/((1+t^2 )(((4t)/(1+t^2 ))+((1−t^2 )/(1+t^2 ))+3)))  ∫((2dt)/(4t+1−t^2 +3+3t^2 ))  ∫((2dt)/(2t^2 +4t+4))  ∫(dt/((t+1)^2 +1))  tan^(−1) (((t+1)/1))+c  tan^(−1) (((1+tan(x/2))/1))+c
dx2sinx+cosx+3lett=tanx2dt=sec2x2×12dx2dt1+t2=dx2dt(1+t2)(4t1+t2+1t21+t2+3)2dt4t+1t2+3+3t22dt2t2+4t+4dt(t+1)2+1tan1(t+11)+ctan1(1+tanx21)+c
Commented by Raj Singh last updated on 26/Jul/18
ttthhannks
ttthhannks
Commented by tanmay.chaudhury50@gmail.com last updated on 27/Jul/18
its ok...
itsok

Leave a Reply

Your email address will not be published. Required fields are marked *