Question Number 40732 by Tinkutara last updated on 26/Jul/18
Commented by Tinkutara last updated on 26/Jul/18
Commented by Tinkutara last updated on 26/Jul/18
Please help in comparing energy of C2 initially and finally.
Answered by ajfour last updated on 27/Jul/18
$${Before}\:{dielectric}\:{is}\:{inserted} \\ $$$${C}_{{eq}} =\frac{{C}_{\mathrm{1}} {C}_{\mathrm{2}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} } \\ $$$${q}_{\mathrm{1}} ={q}_{\mathrm{2}} ={C}_{{eq}} {V}_{{b}} \:\:\:\:\:\left({V}_{{b}} \:{being}\:{emf}\:{of}\:{B}\right) \\ $$$$\:\:\:\:=\frac{{C}_{\mathrm{1}} {C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} } \\ $$$${V}_{\mathrm{1}} =\frac{{q}_{\mathrm{1}} }{{C}_{\mathrm{1}} }\:=\frac{{C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} }\:;\:\:{V}_{\mathrm{2}} =\frac{{C}_{\mathrm{1}} {V}_{{b}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} } \\ $$$${U}_{\mathrm{1}} =\frac{{q}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{2}{C}_{\mathrm{1}} }\:=\:\left(\frac{{C}_{\mathrm{1}} {C}_{\mathrm{2}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} }\right)^{\mathrm{2}} \frac{{V}_{{b}} ^{\:\:\mathrm{2}} }{\mathrm{2}{C}_{\mathrm{1}} } \\ $$$$\:\:\:\:=\:\frac{{C}_{\mathrm{1}} {C}_{\mathrm{2}} ^{\:\mathrm{2}} {V}_{{b}} ^{\:\:\mathrm{2}} }{\mathrm{2}\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${U}_{\mathrm{2}} =\frac{{q}_{\mathrm{2}} ^{\mathrm{2}} }{\mathrm{2}{C}_{\mathrm{2}} }\:=\:\frac{{C}_{\mathrm{1}} ^{\:\mathrm{2}} {C}_{\mathrm{2}} ^{\:} {V}_{{b}} ^{\:\:\mathrm{2}} }{\mathrm{2}\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${let}\:{dielectric}\:{constant}\:{of}\:{slab}\:{be}\:{K}. \\ $$$${After}\:{it}\:{is}\:{slipped}\:{in} \\ $$$${C}_{\mathrm{2}} '={KC}_{\mathrm{2}} \\ $$$${C}_{{eq}} '=\frac{{KC}_{\mathrm{1}} {C}_{\mathrm{2}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\:>\:\frac{{C}_{\mathrm{1}} {C}_{\mathrm{2}} }{{C}_{\mathrm{1}} +{C}_{\mathrm{2}} } \\ $$$${q}_{\mathrm{1}} '={q}_{\mathrm{2}} '={C}_{{eq}} '\:{V}_{{b}} =\frac{{KC}_{\mathrm{1}} {C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\:>\:{q}_{\mathrm{1}} \left(={q}_{\mathrm{2}} \right) \\ $$$${V}_{\mathrm{1}} '=\frac{{q}_{\mathrm{1}} '}{{C}_{\mathrm{1}} }\:=\frac{{KC}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\:>\:{V}_{\mathrm{1}} \\ $$$${V}_{\mathrm{2}} '=\frac{{q}_{\mathrm{2}} '}{{KC}_{\mathrm{2}} }=\frac{{C}_{\mathrm{1}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\:<\:{V}_{\mathrm{2}} \\ $$$${U}_{\mathrm{1}} '=\frac{\left({q}_{\mathrm{1}} '\right)^{\mathrm{2}} }{\mathrm{2}{C}_{\mathrm{1}} }=\frac{\mathrm{1}}{\mathrm{2}{C}_{\mathrm{1}} }\left(\frac{{KC}_{\mathrm{1}} {C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\right)^{\mathrm{2}} \:>\:{U}_{\mathrm{1}} \\ $$$${U}_{\mathrm{2}} '=\frac{\left({q}_{\mathrm{2}} '\right)^{\mathrm{2}} }{\mathrm{2}{KC}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}{KC}_{\mathrm{2}} }\left(\frac{{KC}_{\mathrm{1}} {C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\right)^{\mathrm{2}} \: \\ $$$$\:\:\:\:\:\frac{{U}_{\mathrm{2}} '}{{U}_{\mathrm{2}} }=\frac{\frac{\mathrm{1}}{\mathrm{2}{KC}_{\mathrm{2}} }\left(\frac{{KC}_{\mathrm{1}} {C}_{\mathrm{2}} {V}_{{b}} }{{C}_{\mathrm{1}} +{KC}_{\mathrm{2}} }\right)^{\mathrm{2}} }{\frac{{C}_{\mathrm{1}} ^{\:\mathrm{2}} {C}_{\mathrm{2}} ^{\:} {V}_{{b}} ^{\:\:\mathrm{2}} }{\mathrm{2}\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:=\frac{{K}\left({C}_{\mathrm{1}} +{C}_{\mathrm{2}} \right)^{\mathrm{2}} }{\left({C}_{\mathrm{1}} +{KC}_{\mathrm{2}} \right)^{\mathrm{2}} }\:=\:{K}\left[\frac{\mathrm{1}+\frac{{C}_{\mathrm{1}} }{{C}_{\mathrm{2}} }}{\frac{{C}_{\mathrm{1}} }{{C}_{\mathrm{2}} }+{K}}\right]^{\mathrm{2}} \\ $$$$\:\:\:=\:{K}\left(\frac{\mathrm{1}+{r}}{{K}+{r}}\right)^{\mathrm{2}} \:\:\:{where}\:{r}=\frac{{C}_{\mathrm{1}} }{{C}_{\mathrm{2}} } \\ $$$$\:\:{So}\:{i}\:{believe}\:{it}\:{depends}\:{on}\:{r}\:\&{K}. \\ $$
Commented by Tinkutara last updated on 27/Jul/18
Thanks Sir! I also believe it should be.
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jul/18
$${excellent}…. \\ $$