Question Number 40763 by Cheyboy last updated on 27/Jul/18
Answered by MJS last updated on 27/Jul/18
$${x}={y}={z}=\mathrm{1} \\ $$
Commented by Cheyboy last updated on 27/Jul/18
$${sir},\:{show}\:{working} \\ $$$$ \\ $$
Commented by MJS last updated on 27/Jul/18
$$\mathrm{this}\:\mathrm{is}\:\mathrm{plain}\:\mathrm{to}\:\mathrm{see},\:\mathrm{I}'\mathrm{ll}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{out}\:\mathrm{if}\:\mathrm{there} \\ $$$$\mathrm{are}\:\mathrm{more}\:\mathrm{solutions}… \\ $$
Commented by Cheyboy last updated on 27/Jul/18
$${Ok}\:{sir}\:{thank}\:{you} \\ $$
Answered by MJS last updated on 27/Jul/18
$$\mathrm{we}\:\mathrm{have}\:\mathrm{only}\:\mathrm{2}\:\mathrm{equations}\:\mathrm{for}\:\mathrm{3}\:\mathrm{unknowns} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{is}\:\infty \\ $$
Commented by MJS last updated on 27/Jul/18
$$\mathrm{choose}\:\mathrm{any}\:\mathrm{value}\:\mathrm{for}\:{x}\neq\mathrm{0}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{possible} \\ $$$$\mathrm{to}\:\mathrm{solve}\:\mathrm{for}\:{y},\:{z}\:\in\mathbb{R} \\ $$$$\left(\mathrm{there}\:\mathrm{might}\:\mathrm{also}\:\mathrm{be}\:\mathrm{complex}\:\mathrm{solutions}\right) \\ $$
Commented by Cheyboy last updated on 27/Jul/18
$${Thank}\:{you}\:{sir} \\ $$