Menu Close

Question-40826




Question Number 40826 by behi83417@gmail.com last updated on 28/Jul/18
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jul/18
A(a,a)  B(α,β)  mid point AB(((a+α)/2),((a+β)/2))  h=((a+α)/2)    k=((a+β)/2)  α=2h−a    β==2k−a    (2h−a)^(2/3) +(2k−a)^(2/3) =a^(2/3)   hence locus is  (2x−a)^(2/3) +(2y−a)^(2/3) =a^(2/3)
$${A}\left({a},{a}\right)\:\:{B}\left(\alpha,\beta\right) \\ $$$${mid}\:{point}\:{AB}\left(\frac{{a}+\alpha}{\mathrm{2}},\frac{{a}+\beta}{\mathrm{2}}\right) \\ $$$${h}=\frac{{a}+\alpha}{\mathrm{2}}\:\:\:\:{k}=\frac{{a}+\beta}{\mathrm{2}} \\ $$$$\alpha=\mathrm{2}{h}−{a}\:\:\:\:\beta==\mathrm{2}{k}−{a} \\ $$$$ \\ $$$$\left(\mathrm{2}{h}−{a}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\left(\mathrm{2}{k}−{a}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} ={a}^{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$${hence}\:{locus}\:{is} \\ $$$$\left(\mathrm{2}{x}−{a}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\left(\mathrm{2}{y}−{a}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} ={a}^{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$ \\ $$
Commented by behi83417@gmail.com last updated on 28/Jul/18
thank you sir tanmay.but midpoint  of AB,not located on corve.
$${thank}\:{you}\:{sir}\:{tanmay}.{but}\:{midpoint} \\ $$$${of}\:{AB},{not}\:{located}\:{on}\:{corve}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jul/18
point(h,k)  is the mid point...but i have not put  them on the curve...  (α,β) point lies on the curve that is point B  so h=((a+α)/2)   α=2h−a   β=2k−a  now i can put them in curve ...
$${point}\left({h},{k}\right)\:\:{is}\:{the}\:{mid}\:{point}…{but}\:{i}\:{have}\:{not}\:{put} \\ $$$${them}\:{on}\:{the}\:{curve}… \\ $$$$\left(\alpha,\beta\right)\:{point}\:{lies}\:{on}\:{the}\:{curve}\:{that}\:{is}\:{point}\:{B} \\ $$$${so}\:{h}=\frac{{a}+\alpha}{\mathrm{2}}\:\:\:\alpha=\mathrm{2}{h}−{a}\:\:\:\beta=\mathrm{2}{k}−{a} \\ $$$${now}\:{i}\:{can}\:{put}\:{them}\:{in}\:{curve}\:… \\ $$$$ \\ $$
Commented by behi83417@gmail.com last updated on 28/Jul/18
ok.thanks.
$${ok}.{thanks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *