Menu Close

Question-41066




Question Number 41066 by Tawa1 last updated on 01/Aug/18
Answered by candre last updated on 03/Aug/18
x≡1(mod3)  x≡3(mod5)  x≡3(mod7)  by chinese remainder theorem  5∙7x_1 ≡1(mod3)  2x_1 ≡1(mod3)  x_1 ≡2(mod3)  3∙7x_2 ≡1(mod5)  3∙2x_2 ≡1(mod5)  6x_2 ≡1(mod5)  x_2 ≡1(mod5)  3∙5x_3 ≡1(mod7)  15x_3 ≡1(mod7)  x_3 ≡1(mod7)  x≡1×5×7×2+3×3×7×1+3×3×5×1(mod3×5×7)  x≡70+63+45(mod105)  x≡178(mod105)  x≡73(mod105)
$${x}\equiv\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$${x}\equiv\mathrm{3}\left(\mathrm{mod5}\right) \\ $$$${x}\equiv\mathrm{3}\left(\mathrm{mod7}\right) \\ $$$${by}\:{chinese}\:{remainder}\:{theorem} \\ $$$$\mathrm{5}\centerdot\mathrm{7}{x}_{\mathrm{1}} \equiv\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$$\mathrm{2}{x}_{\mathrm{1}} \equiv\mathrm{1}\left(\mathrm{mod3}\right) \\ $$$${x}_{\mathrm{1}} \equiv\mathrm{2}\left(\mathrm{mod3}\right) \\ $$$$\mathrm{3}\centerdot\mathrm{7}{x}_{\mathrm{2}} \equiv\mathrm{1}\left(\mathrm{mod5}\right) \\ $$$$\mathrm{3}\centerdot\mathrm{2}{x}_{\mathrm{2}} \equiv\mathrm{1}\left(\mathrm{mod5}\right) \\ $$$$\mathrm{6}{x}_{\mathrm{2}} \equiv\mathrm{1}\left(\mathrm{mod5}\right) \\ $$$${x}_{\mathrm{2}} \equiv\mathrm{1}\left(\mathrm{mod5}\right) \\ $$$$\mathrm{3}\centerdot\mathrm{5}{x}_{\mathrm{3}} \equiv\mathrm{1}\left(\mathrm{mod7}\right) \\ $$$$\mathrm{15}{x}_{\mathrm{3}} \equiv\mathrm{1}\left(\mathrm{mod7}\right) \\ $$$${x}_{\mathrm{3}} \equiv\mathrm{1}\left(\mathrm{mod7}\right) \\ $$$${x}\equiv\mathrm{1}×\mathrm{5}×\mathrm{7}×\mathrm{2}+\mathrm{3}×\mathrm{3}×\mathrm{7}×\mathrm{1}+\mathrm{3}×\mathrm{3}×\mathrm{5}×\mathrm{1}\left(\mathrm{mod3}×\mathrm{5}×\mathrm{7}\right) \\ $$$${x}\equiv\mathrm{70}+\mathrm{63}+\mathrm{45}\left(\mathrm{mod105}\right) \\ $$$${x}\equiv\mathrm{178}\left(\mathrm{mod105}\right) \\ $$$${x}\equiv\mathrm{73}\left(\mathrm{mod105}\right) \\ $$
Commented by Tawa1 last updated on 03/Aug/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *