Menu Close

Question-41066




Question Number 41066 by Tawa1 last updated on 01/Aug/18
Answered by candre last updated on 03/Aug/18
x≡1(mod3)  x≡3(mod5)  x≡3(mod7)  by chinese remainder theorem  5∙7x_1 ≡1(mod3)  2x_1 ≡1(mod3)  x_1 ≡2(mod3)  3∙7x_2 ≡1(mod5)  3∙2x_2 ≡1(mod5)  6x_2 ≡1(mod5)  x_2 ≡1(mod5)  3∙5x_3 ≡1(mod7)  15x_3 ≡1(mod7)  x_3 ≡1(mod7)  x≡1×5×7×2+3×3×7×1+3×3×5×1(mod3×5×7)  x≡70+63+45(mod105)  x≡178(mod105)  x≡73(mod105)
x1(mod3)x3(mod5)x3(mod7)bychineseremaindertheorem57x11(mod3)2x11(mod3)x12(mod3)37x21(mod5)32x21(mod5)6x21(mod5)x21(mod5)35x31(mod7)15x31(mod7)x31(mod7)x1×5×7×2+3×3×7×1+3×3×5×1(mod3×5×7)x70+63+45(mod105)x178(mod105)x73(mod105)
Commented by Tawa1 last updated on 03/Aug/18
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *