Menu Close

Question-41203




Question Number 41203 by ajfour last updated on 03/Aug/18
Commented by ajfour last updated on 03/Aug/18
If AB= c is a diameter of larger  circle and PQ is a diameter of  the smaller circle, find x in terms  of c ; (geometrically ).
$${If}\:{AB}=\:{c}\:{is}\:{a}\:{diameter}\:{of}\:{larger} \\ $$$${circle}\:{and}\:{PQ}\:{is}\:{a}\:{diameter}\:{of} \\ $$$${the}\:{smaller}\:{circle},\:{find}\:\boldsymbol{\mathrm{x}}\:{in}\:{terms} \\ $$$${of}\:{c}\:;\:\left({geometrically}\:\right). \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Aug/18
QP  and AB intersect at T..∠QAP=90^o   ∠APT=θ  ∠ATP=90^o   ∠PAT=90−θ  ∠QAT=θ  ∠AQT=90−θ  ∠ATQ=90^o   so  △PAT similar to △QAT  ((AT)/(QT))=((PT)/(AT))   AT^2 =PT.QT  similarly  QT^2 =AT.BT  ((AT^4 )/(PT^2 ))=AT.BT  AT^3 =PT^2 .BT  x^3 =1^2 =(c−x)  x^3 +x=c
$${QP}\:\:{and}\:{AB}\:{intersect}\:{at}\:{T}..\angle{QAP}=\mathrm{90}^{{o}} \\ $$$$\angle{APT}=\theta\:\:\angle{ATP}=\mathrm{90}^{{o}} \:\:\angle{PAT}=\mathrm{90}−\theta \\ $$$$\angle{QAT}=\theta\:\:\angle{AQT}=\mathrm{90}−\theta\:\:\angle{ATQ}=\mathrm{90}^{{o}} \\ $$$${so}\:\:\bigtriangleup{PAT}\:{similar}\:{to}\:\bigtriangleup{QAT} \\ $$$$\frac{{AT}}{{QT}}=\frac{{PT}}{{AT}}\:\:\:{AT}^{\mathrm{2}} ={PT}.{QT} \\ $$$${similarly}\:\:{QT}^{\mathrm{2}} ={AT}.{BT} \\ $$$$\frac{{AT}^{\mathrm{4}} }{{PT}^{\mathrm{2}} }={AT}.{BT} \\ $$$${AT}^{\mathrm{3}} ={PT}^{\mathrm{2}} .{BT} \\ $$$${x}^{\mathrm{3}} =\mathrm{1}^{\mathrm{2}} =\left({c}−{x}\right) \\ $$$${x}^{\mathrm{3}} +{x}={c} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Aug/18
why you ignore my answer...no comment  whether answer got conform to the answer  given in the source from where you posted the  question...
$${why}\:{you}\:{ignore}\:{my}\:{answer}…{no}\:{comment} \\ $$$${whether}\:{answer}\:{got}\:{conform}\:{to}\:{the}\:{answer} \\ $$$${given}\:{in}\:{the}\:{source}\:{from}\:{where}\:{you}\:{posted}\:{the} \\ $$$${question}… \\ $$
Commented by ajfour last updated on 03/Aug/18
i seek an alternate solution not  using any algebraic technique  like cardano′s  through construction i seek to  obtain x in terms of c. please try..
$${i}\:{seek}\:{an}\:{alternate}\:{solution}\:{not} \\ $$$${using}\:{any}\:{algebraic}\:{technique} \\ $$$${like}\:{cardano}'{s} \\ $$$${through}\:{construction}\:{i}\:{seek}\:{to} \\ $$$${obtain}\:{x}\:{in}\:{terms}\:{of}\:{c}.\:{please}\:{try}.. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Aug/18
ok... i thought...you are are ignoring whatever  i have done..
$${ok}…\:{i}\:{thought}…{you}\:{are}\:{are}\:{ignoring}\:{whatever} \\ $$$${i}\:{have}\:{done}.. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Aug/18
let QP and AB intersect at point T  AT^2 =QT.TP  QT^2 =AT.BT  ((AT^4 )/(TP^2 ))=AT.BT  AT^3 =TP^2 .BT  x^3 =1^2 .(c−x)  x^3 +x=c
$${let}\:{QP}\:{and}\:{AB}\:{intersect}\:{at}\:{point}\:{T} \\ $$$${AT}^{\mathrm{2}} ={QT}.{TP} \\ $$$${QT}^{\mathrm{2}} ={AT}.{BT} \\ $$$$\frac{{AT}^{\mathrm{4}} }{{TP}^{\mathrm{2}} }={AT}.{BT} \\ $$$${AT}^{\mathrm{3}} ={TP}^{\mathrm{2}} .{BT} \\ $$$${x}^{\mathrm{3}} =\mathrm{1}^{\mathrm{2}} .\left({c}−{x}\right) \\ $$$${x}^{\mathrm{3}} +{x}={c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *