Question Number 41347 by behi83417@gmail.com last updated on 06/Aug/18
Answered by MJS last updated on 06/Aug/18
$${m}_{{a}} =\sqrt{\frac{{b}^{\mathrm{2}} }{\mathrm{2}}+\frac{{c}^{\mathrm{2}} }{\mathrm{2}}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$${m}_{{b}} =\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{2}}+\frac{{c}^{\mathrm{2}} }{\mathrm{2}}−\frac{{b}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$${m}_{{c}} =\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{2}}+\frac{{b}^{\mathrm{2}} }{\mathrm{2}}−\frac{{c}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$${m}_{{a}} ^{\mathrm{2}} +{m}_{{b}} ^{\mathrm{2}} −{m}_{{c}} ^{\mathrm{2}} =\mathrm{0} \\ $$$$\frac{\mathrm{5}{c}^{\mathrm{2}} }{\mathrm{4}}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}−\frac{{b}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{let}\:{c}=\mathrm{1} \\ $$$$\Rightarrow\:{b}=\sqrt{\mathrm{5}−{a}^{\mathrm{2}} }\:\Rightarrow\:\mathrm{0}<{a}<\sqrt{\mathrm{5}} \\ $$$${a}+{b}>{c} \\ $$$${a}+\sqrt{\mathrm{5}−{a}^{\mathrm{2}} }>\mathrm{1}\:\Rightarrow\:{a}>−\mathrm{1} \\ $$$${a}+{c}>{b} \\ $$$${a}+\mathrm{1}>\sqrt{\mathrm{5}−{a}^{\mathrm{2}} }\:\Rightarrow\:{a}>\mathrm{1} \\ $$$${b}+{c}>{a} \\ $$$$\sqrt{\mathrm{5}−{a}^{\mathrm{2}} }+\mathrm{1}>{a}\:\Rightarrow\:{a}<\mathrm{2} \\ $$$$ \\ $$$$\Rightarrow\:\mathrm{1}<{a}<\mathrm{2}\:\wedge\:{b}=\sqrt{\mathrm{5}−{a}^{\mathrm{2}} }\:\wedge\:{c}=\mathrm{1} \\ $$$$ \\ $$$${c}^{\mathrm{2}} <\frac{{ab}}{\mathrm{2}} \\ $$$$\mathrm{1}<\frac{\mathrm{1}}{\mathrm{2}}{a}\sqrt{\mathrm{5}−{a}^{\mathrm{2}} }\:\Rightarrow\:\mathrm{1}<{a}<\mathrm{2} \\ $$$${q}.{e}.{d}. \\ $$
Commented by behi83417@gmail.com last updated on 06/Aug/18
$${thank}\:{you}\:{dear}\:{MJS}. \\ $$$${line}#\mathrm{5}:\frac{\mathrm{5}{c}^{\mathrm{2}} }{\mathrm{4}}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}−\frac{{b}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0}. \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{5}{c}^{\mathrm{2}} \\ $$$${cosC}=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}=\frac{\mathrm{4}{c}^{\mathrm{2}} }{\mathrm{2}{ab}}<\mathrm{1}\Rightarrow \\ $$$$\Rightarrow{c}^{\mathrm{2}} <\frac{{ab}}{\mathrm{2}}\:\Rightarrow{c}<\sqrt{\frac{{ab}}{\mathrm{2}}}\:.\blacksquare \\ $$
Commented by MJS last updated on 06/Aug/18
$$\mathrm{typo}…\:\mathrm{thank}\:\mathrm{you},\:\mathrm{I}\:\mathrm{corrected}\:\mathrm{it} \\ $$