Menu Close

Question-41348




Question Number 41348 by behi83417@gmail.com last updated on 06/Aug/18
Commented by MJS last updated on 06/Aug/18
trapezoid ABCD  a=AB  b=BC  c=CD  d=DA  e=AC  f=BD  which triangles do you mean?  △ABC and △ABD?
trapezoidABCDa=ABb=BCc=CDd=DAe=ACf=BDwhichtrianglesdoyoumean?ABCandABD?
Commented by behi83417@gmail.com last updated on 06/Aug/18
there is 4 triangles.you can   assume any 2 triangles with  areas m&n.2 opposite or 2 neighbor  triangles.question have more   than 1 ansewer.
thereis4triangles.youcanassumeany2triangleswithareasm&n.2oppositeor2neighbortriangles.questionhavemorethan1ansewer.
Commented by behi83417@gmail.com last updated on 06/Aug/18
Commented by behi83417@gmail.com last updated on 06/Aug/18
Commented by behi83417@gmail.com last updated on 06/Aug/18
△oAB∼△oDC⇒((oA)/(oC))=((oB)/(oD))=((AB)/(DC))=k  (S_(oAB) /S_(oDC) )=k^2 ⇒(m/n)=k^2 ⇒k=(√(m/n))  S_(ABCD) =(1/2)(AB+CD).AP=(1/2)(AB+CD)(oH+oH′)=  =(1/2)(AB+CD)(((2m)/(AB))+((2n)/(CD)))=  =(1/2)(AB.((2m)/(AB))+AB.((2n)/(CD))+CD.((2m)/(AB))+CD.((2n)/(CD)))=  =(1/2)(2m+2n.(√(m/n))+2m.(√(n/m))+2n)=  =(m+2(√(mn))+n)=((√m)+(√n))^2 .
oABoDCoAoC=oBoD=ABDC=kSoABSoDC=k2mn=k2k=mnSABCD=12(AB+CD).AP=12(AB+CD)(oH+oH)==12(AB+CD)(2mAB+2nCD)==12(AB.2mAB+AB.2nCD+CD.2mAB+CD.2nCD)==12(2m+2n.mn+2m.nm+2n)==(m+2mn+n)=(m+n)2.

Leave a Reply

Your email address will not be published. Required fields are marked *