Question Number 41436 by Raj Singh last updated on 07/Aug/18
Answered by rahul 19 last updated on 07/Aug/18
$$\mathrm{Check}\:\mathrm{Q}.\:\mathrm{Id}\:\mathrm{36491} \\ $$
Answered by MJS last updated on 07/Aug/18
$$\int\frac{{dx}}{{x}^{\mathrm{4}} +\mathrm{8}{x}^{\mathrm{2}} +\mathrm{9}}=\int\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{4}−\sqrt{\mathrm{7}}\right)\left({x}^{\mathrm{2}} +\mathrm{4}+\sqrt{\mathrm{7}}\right)}= \\ $$$$\frac{\sqrt{\mathrm{7}}}{\mathrm{14}}\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{4}−\sqrt{\mathrm{7}}}−\frac{\sqrt{\mathrm{7}}}{\mathrm{14}}\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{4}+\sqrt{\mathrm{7}}}= \\ $$$$\:\:\:\:\:\left[\int\frac{{dt}}{{t}^{\mathrm{2}} +{a}}=\frac{\sqrt{{a}}}{{a}}\mathrm{arctan}\:\frac{{x}\sqrt{{a}}}{{a}}\right] \\ $$$$=\left(\frac{\mathrm{7}\sqrt{\mathrm{2}}+\sqrt{\mathrm{14}}}{\mathrm{84}}\right)\mathrm{arctan}\:\left(\frac{\sqrt{\mathrm{14}}+\sqrt{\mathrm{2}}}{\mathrm{6}}{x}\right)\:−\left(\frac{\mathrm{7}\sqrt{\mathrm{2}}−\sqrt{\mathrm{14}}}{\mathrm{84}}\right)\mathrm{arctan}\:\left(\frac{\sqrt{\mathrm{14}}−\sqrt{\mathrm{2}}}{\mathrm{6}}{x}\right)\:+\mathrm{4}{c} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Aug/18
$$\left.\mathrm{1}\right)\int\frac{{dx}}{{x}^{\mathrm{4}} +\mathrm{8}{x}^{\mathrm{2}} +\mathrm{9}} \\ $$$$=\int\frac{{dx}}{\left({x}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{2}.{x}^{\mathrm{2}} .\mathrm{4}+\mathrm{16}−\mathrm{7}} \\ $$$$=\int\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} −\left(\sqrt{\mathrm{7}}\right)^{\mathrm{2}} } \\ $$$$=\int\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{4}+\sqrt{\mathrm{7}\:}\:\right)\left({x}^{\mathrm{2}} +\mathrm{4}−\sqrt{\mathrm{7}}\:\right)}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{7}}}\left\{\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{4}−\sqrt{\mathrm{7}}}−\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{4}+\sqrt{\mathrm{7}}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{7}}}\left\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}−\sqrt{\mathrm{7}}}}{tan}^{−\mathrm{1}} \left(\frac{{x}}{\:\sqrt{\mathrm{4}−\sqrt{\mathrm{7}}}}\right)−\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}+\sqrt{\mathrm{7}}}}{tan}^{−\mathrm{1}} \left(\frac{{x}}{\:\sqrt{\mathrm{4}+\sqrt{\mathrm{7}}}}\right)\right. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Aug/18
$$\left.\mathrm{2}\right){t}^{\mathrm{2}} ={secx}+{tanx} \\ $$$$\mathrm{2}{tdt}={secxtanx}+{sec}^{\mathrm{2}} {xdx}={secx}\left({secx}+{tanx}\right){dx} \\ $$$$\mathrm{2}{tdt}={secx}\left({t}^{\mathrm{2}} \right){dx} \\ $$$$\frac{\mathrm{2}{dt}}{{t}}={secxdx} \\ $$$${sec}^{\mathrm{2}} {x}−{tan}^{\mathrm{2}} {x}=\mathrm{1} \\ $$$$\left({secx}+{tanx}\right)\left({secx}−{tanx}\right)=\mathrm{1} \\ $$$${secx}−{tanx}=\frac{\mathrm{1}}{{t}^{\mathrm{2}} } \\ $$$${secx}+{tanx}={t}^{\mathrm{2}} \\ $$$${secx}=\frac{\mathrm{1}}{\mathrm{2}}\left({t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right) \\ $$$$\int\frac{{sec}^{\mathrm{2}} {x}}{\left({secx}+{tanx}\right)^{\frac{\mathrm{9}}{\mathrm{2}}} }{dx} \\ $$$$\int\frac{{secx}.{secxdx}}{\left({secx}+{tanx}\right)^{\frac{\mathrm{9}}{\mathrm{2}}} } \\ $$$$\int\frac{\frac{\mathrm{1}}{\mathrm{2}}\left({t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)×\frac{\mathrm{2}{dt}}{{t}}}{\left({t}^{\mathrm{2}} \right)^{\frac{\mathrm{9}}{\mathrm{2}}} } \\ $$$$\int\frac{{t}^{\mathrm{2}} +\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}{{t}^{\mathrm{10}} }{dt} \\ $$$$\int\left({t}^{−\mathrm{8}} +{t}^{−\mathrm{12}} \right){dt} \\ $$$$=\frac{{t}^{−\mathrm{7}} }{−\mathrm{7}}+\frac{{t}^{−\mathrm{11}} }{−\mathrm{11}}{c} \\ $$$$=\frac{\left({secx}+{tanx}\right)^{\frac{−\mathrm{7}}{\mathrm{2}}} }{−\mathrm{7}}+\frac{\left({secx}+{tanx}\right)^{\frac{−\mathrm{11}}{\mathrm{2}}} }{−\mathrm{11}}+{c} \\ $$$$ \\ $$