Question Number 41675 by Raj Singh last updated on 11/Aug/18
Commented by math khazana by abdo last updated on 12/Aug/18
$${I}\:=\:\int\:\:\:\:\frac{{dx}}{\mathrm{1}+\frac{{cosx}}{{sinx}}}\:=\:\int\:\:\:\frac{{sinx}}{{sinx}\:+{cosx}}\:{dx} \\ $$$$=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\:\int\:\:\:\:\frac{\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}{\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\int\:\:\:\frac{\mathrm{2}{t}}{\mathrm{2}{t}+\mathrm{1}−{t}^{\mathrm{2}} }\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\:\int\:\:\frac{\mathrm{4}{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(−{t}^{\mathrm{2}} \:+\mathrm{2}{t}\:+\mathrm{1}\right)}{dt}\:=−\int\:\:\frac{\mathrm{4}{t}\:{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)\left({t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{1}\right)} \\ $$$${let}\:{decompose}\:{F}\left({t}\right)\:=\frac{\mathrm{4}{t}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)\left({t}^{\mathrm{2}} \:−\mathrm{2}{t}−\mathrm{1}\right)} \\ $$$${roots}\:{of}\:\:{t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{1} \\ $$$$\Delta^{'} \:=\:\mathrm{1}−\left(−\mathrm{1}\right)\:=\mathrm{2}\:\Rightarrow{t}_{\mathrm{1}} =\mathrm{1}+\sqrt{\mathrm{2}}\:\:{and}\:{t}_{\mathrm{2}} =\mathrm{1}−\sqrt{\mathrm{2}} \\ $$$${F}\left({t}\right)=\frac{\mathrm{4}{t}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)\left({t}−{t}_{\mathrm{1}} \right)\left({t}−{t}_{\mathrm{2}} \right)} \\ $$$$=\:\frac{{a}}{{t}−{t}_{\mathrm{1}} }\:+\frac{{b}}{{t}−{t}_{\mathrm{2}} }\:+\frac{{ct}\:+{d}}{{t}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${a}\:=\:\frac{\mathrm{4}{t}_{\mathrm{1}} }{\left({t}_{\mathrm{1}} ^{\mathrm{2}} \:+\mathrm{1}\right)\left(\mathrm{2}\sqrt{\mathrm{2}}\right)}\:=\frac{\mathrm{2}{t}_{\mathrm{1}} }{\:\sqrt{\mathrm{2}}\left({t}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{1}\right)}\:=\frac{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}\left(\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}}\right)} \\ $$$$=\frac{\mathrm{1}+\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)} \\ $$$${b}\:=\:\frac{\mathrm{4}{t}_{\mathrm{2}} }{\left({t}_{\mathrm{2}} ^{\mathrm{2}} \:+\mathrm{1}\right)\left(−\mathrm{2}\sqrt{\mathrm{2}}\right)}\:=\frac{\mathrm{4}\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)}{\left(\mathrm{4}−\mathrm{2}\sqrt{\mathrm{2}}\right)\left(−\mathrm{2}\sqrt{\mathrm{2}}\right)} \\ $$$$=\frac{\mathrm{1}−\sqrt{\mathrm{2}}}{\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)\left(−\sqrt{\mathrm{2}}\right)}\:=\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)}\:\:…{be}\:{continued}… \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Aug/18
$$\int\frac{{dx}}{\mathrm{1}+{cotx}} \\ $$$$\int\frac{{sinx}}{{sinx}+{cosx}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{cosx}+{sinx}−\left({cosx}−{sinx}\right)}{{sinx}+{cosx}}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\int{dx}−\int\frac{{cosx}−{sinx}}{{sinx}+{cosx}}{dx}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[\int{dx}−\int\frac{{d}\left({sinx}+{cosx}\right)}{{sinx}+{cosx}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{x}−{ln}\left({sinx}+{cosx}\right)\right]+{c} \\ $$$$ \\ $$