Question Number 41754 by Tawa1 last updated on 12/Aug/18
Answered by candre last updated on 12/Aug/18
$$\mathrm{we}\:\mathrm{have}\:\mathrm{from}\:\mathrm{1}\:\mathrm{to}\:\mathrm{1000}\:\mathrm{number}\:\mathrm{that}\:\mathrm{can}\:\mathrm{have}\:\mathrm{3} \\ $$$$\mathrm{3}×× \\ $$$$×\mathrm{3}× \\ $$$$××\mathrm{3} \\ $$$$\mathrm{separating}\:\mathrm{cases} \\ $$$$××\mathrm{3}: \\ $$$$\mathrm{10}×\mathrm{10}=\mathrm{100}\left(\mathrm{9}×\mathrm{9}=\mathrm{81}\right) \\ $$$$×\mathrm{3}×: \\ $$$$\mathrm{10}×\mathrm{10}=\mathrm{100}\left(\mathrm{9}×\mathrm{9}=\mathrm{81}\right) \\ $$$$\mathrm{3}××: \\ $$$$\mathrm{10}×\mathrm{10}=\mathrm{100}\left(\mathrm{9}×\mathrm{9}=\mathrm{81}\right) \\ $$$$\mathrm{analysying}\:\mathrm{the}\:\mathrm{intersection} \\ $$$$×\mathrm{33}:\mathrm{10}\left(\mathrm{9}\right) \\ $$$$\mathrm{3}×\mathrm{3}:\mathrm{10}\left(\mathrm{9}\right) \\ $$$$\mathrm{33}×:\mathrm{10}\left(\mathrm{9}\right) \\ $$$$\mathrm{333}:\mathrm{1} \\ $$$$\mathrm{so},\:{by}\:{inclusion}\:{exclusion}\:{principe} \\ $$$$\mathrm{100}+\mathrm{100}+\mathrm{100}−\mathrm{10}−\mathrm{10}−\mathrm{10}+\mathrm{1}=\mathrm{271} \\ $$$$\mathrm{or},\:\mathrm{counting}\:\mathrm{alredy}\:\mathrm{excluding}\:\mathrm{overlaping}\:\left(\left(\right)\:\mathrm{one}\right) \\ $$$$\mathrm{81}×\mathrm{3}+\mathrm{9}×\mathrm{3}+\mathrm{1}=\mathrm{271} \\ $$
Commented by Tawa1 last updated on 12/Aug/18
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Aug/18