Menu Close

Question-41851




Question Number 41851 by de best last updated on 13/Aug/18
Commented by math khazana by abdo last updated on 14/Aug/18
changement y=atan(t) give  ∫   (dy/(a^2  +y^2 )) =(1/a^2 )  ∫    ((a(1+tan^2 t)dt)/(1+tan^2 t))    (a≠0)  = (1/a)t +c =(1/a) arctan((y/a))+c  if a=0  we get? ∫   (dy/y^2 ) =−(1/y) +c  .
$${changement}\:{y}={atan}\left({t}\right)\:{give} \\ $$$$\int\:\:\:\frac{{dy}}{{a}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:=\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\:\:\int\:\:\:\:\frac{{a}\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right){dt}}{\mathrm{1}+{tan}^{\mathrm{2}} {t}}\:\:\:\:\left({a}\neq\mathrm{0}\right) \\ $$$$=\:\frac{\mathrm{1}}{{a}}{t}\:+{c}\:=\frac{\mathrm{1}}{{a}}\:{arctan}\left(\frac{{y}}{{a}}\right)+{c} \\ $$$${if}\:{a}=\mathrm{0}\:\:{we}\:{get}?\:\int\:\:\:\frac{{dy}}{{y}^{\mathrm{2}} }\:=−\frac{\mathrm{1}}{{y}}\:+{c}\:\:. \\ $$
Commented by de best last updated on 14/Aug/18
thanks sir. really appreciate
$${thanks}\:{sir}.\:{really}\:{appreciate} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *