Question Number 41989 by Raj Singh last updated on 16/Aug/18
Commented by maxmathsup by imad last updated on 16/Aug/18
$${let}\:\:{I}\:\:=\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)^{\mathrm{3}} }\:\:{changement}\:{x}=\sqrt{\mathrm{2}}{tan}\left({t}\right)\:{give} \\ $$$${I}\:\:=\:\int\:\:\:\:\frac{\sqrt{\mathrm{2}}\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right)}{\mathrm{8}\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right)^{\mathrm{3}} }{dt}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\:\:\int\:\:\:{cos}^{\mathrm{4}} {t}\:{dt} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\:\int\:\:\:\left(\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}\right)^{\mathrm{2}} {dt}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{32}}\:\:\int\:\:\:\left(\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{t}\right)\:+{cos}^{\mathrm{2}} \left(\mathrm{2}{t}\right)\right){dt} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{32}}\:{t}\:\:\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{16}}\:\int\:\:\:{cos}\left(\mathrm{2}{t}\right){dt}\:\:\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{64}}\:\int\:\:\:\left(\mathrm{1}+{cos}\left(\mathrm{4}{t}\right)\right){dt} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{32}}{t}\:\:\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{32}}\:{sin}\left(\mathrm{2}{t}\right)\:\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{64}}{t}\:\:\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{4}×\mathrm{64}}\:{sin}\left(\mathrm{4}{t}\right) \\ $$$$=\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{32}}\:{t}\:\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{32}}\:{sin}\left(\mathrm{2}{t}\right)\:\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{256}}\:{sin}\left(\mathrm{4}{t}\right)\:\:{but}\:\:\:{t}\:={arctan}\left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right) \\ $$$${sin}\left(\mathrm{2}{t}\right)\:=\frac{\mathrm{2}{tan}\left({t}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} {t}}\:\:=\frac{\mathrm{2}\frac{{x}}{\:\sqrt{\mathrm{2}}}}{\mathrm{1}+\left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} }\:=\frac{\mathrm{2}{x}\sqrt{\mathrm{2}}}{\mathrm{2}+{x}^{\mathrm{2}} } \\ $$$${sin}\left(\mathrm{4}{t}\right)\:=\mathrm{2}{sin}\left(\mathrm{2}{t}\right){cos}\left(\mathrm{2}{t}\right)\:=\frac{\mathrm{4}{tan}\left({t}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} \left({t}\right)}\:\frac{\mathrm{1}−{tan}^{\mathrm{2}} \left({t}\right)}{\mathrm{1}+{tan}^{\mathrm{2}} {t}} \\ $$$$=\frac{\mathrm{4}\frac{{x}}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}−\left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \right)}{\left(\mathrm{1}+\left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\:\frac{\frac{\mathrm{4}{x}}{\:\sqrt{\mathrm{2}}}\left(\frac{\mathrm{2}−{x}^{\mathrm{2}} }{\mathrm{2}}\right)}{\left(\frac{\mathrm{2}+{x}^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} }\:=\:\mathrm{4}\:.\frac{\mathrm{4}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\frac{\mathrm{2}−{x}^{\mathrm{2}} }{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\frac{\mathrm{8}}{\:\sqrt{\mathrm{2}}}\:\frac{\mathrm{2}−{x}^{\mathrm{2}} }{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${I}\:\:=\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{32}}\:{arctan}\left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right)\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{32}}\:\frac{\mathrm{2}{x}\sqrt{\mathrm{2}}}{\mathrm{2}+{x}^{\mathrm{2}} }\:+\frac{\sqrt{\mathrm{2}}}{\mathrm{256}}\:\frac{\mathrm{8}}{\:\sqrt{\mathrm{2}}}\:\frac{\mathrm{2}−{x}^{\mathrm{2}} }{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:+{c}\:. \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Aug/18
$${x}=\sqrt{\mathrm{2}}\:{tan}\alpha\:\:{dx}=\sqrt{\mathrm{2}}\:{sec}^{\mathrm{2}} \alpha\:{d}\alpha \\ $$$$\int\frac{\sqrt{\mathrm{2}}\:{sec}^{\mathrm{2}} \alpha{d}\alpha}{\left\{\mathrm{2}\left({tan}^{\mathrm{2}} \alpha\:+\mathrm{1}\right)\right\}^{\mathrm{3}} } \\ $$$$\frac{\sqrt{\mathrm{2}}\:}{\mathrm{2}^{\mathrm{3}} }\int\frac{{sec}^{\mathrm{2}} \alpha}{{sec}^{\mathrm{6}} \alpha}{d}\alpha \\ $$$$\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\int{cos}^{\mathrm{4}} \alpha{d}\alpha \\ $$$$\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\int\frac{\mathrm{1}+{cos}\mathrm{2}\alpha}{\mathrm{2}}×\frac{\mathrm{1}+{cos}\mathrm{2}\alpha}{\mathrm{2}}{d}\alpha \\ $$$$\frac{\mathrm{1}}{\mathrm{16}\sqrt{\mathrm{2}}\:}\int\mathrm{1}+\mathrm{2}{cos}\mathrm{2}\alpha+\frac{\mathrm{1}+{cos}\mathrm{4}\alpha}{\mathrm{2}}\:{d}\alpha \\ $$$$\frac{\mathrm{1}}{\mathrm{16}\sqrt{\mathrm{2}}\:}\int{d}\alpha+\frac{\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{2}}\:}\int{cos}\mathrm{2}\alpha+\frac{\mathrm{1}}{\mathrm{32}\sqrt{\mathrm{2}}}\int{d}\alpha+\frac{\mathrm{1}}{\mathrm{32}\sqrt{\mathrm{2}}}\int{cos}\mathrm{4}\alpha{d}\alpha \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}\sqrt{\mathrm{2}}}\alpha+\frac{\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{2}}}×\frac{{sin}\mathrm{2}\alpha}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{32}\sqrt{\mathrm{2}}}\alpha+\frac{\mathrm{1}}{\mathrm{32}\sqrt{\mathrm{2}}}×\frac{{sin}\mathrm{4}\alpha}{\mathrm{4}}+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{32}\sqrt{\mathrm{2}}\:}\left(\mathrm{2}\alpha+\alpha\right)+\frac{\mathrm{1}}{\mathrm{16}\sqrt{\mathrm{2}\:}}×\frac{\mathrm{2}{tan}\alpha}{\mathrm{1}+{tan}^{\mathrm{2}} \alpha}+\frac{\mathrm{1}}{\mathrm{128}\sqrt{\mathrm{2}}}×\left(\mathrm{2}.\frac{\mathrm{2}{tan}\alpha}{\mathrm{1}+{tan}^{\mathrm{2}} \alpha}.\frac{\mathrm{1}−{tan}^{\mathrm{2}} \alpha}{\mathrm{1}+{tan}^{\mathrm{2}} \alpha}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{32}\sqrt{\mathrm{2}}}×\mathrm{3}{tan}^{−\mathrm{1}} \left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right)+\frac{\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{2}}}×\frac{\frac{{x}}{\:\sqrt{\mathrm{2}}}}{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{32}\sqrt{\mathrm{2}}}\left(\frac{\frac{{x}}{\:\sqrt{\mathrm{2}}}}{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}.\frac{\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{32}\sqrt{\mathrm{2}}}×\mathrm{3}{tan}^{−\mathrm{1}} \left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right)+\frac{\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{2}}}×\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}×\frac{{x}}{\mathrm{2}+{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{32}\sqrt{\mathrm{2}}}\left(\sqrt{\mathrm{2}}\:.\frac{{x}}{\mathrm{2}+{x}^{\mathrm{2}} }.\frac{\mathrm{2}−{x}^{\mathrm{2}} }{\mathrm{2}+{x}^{\mathrm{2}} }\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{32}\sqrt{\mathrm{2}}}×\mathrm{3}{tan}^{−\mathrm{1}} \left(\frac{{x}}{\:\sqrt{\mathrm{2}}\:}\right)+\frac{\mathrm{1}}{\mathrm{8}}.\frac{{x}}{\mathrm{2}+{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{32}}\left\{\frac{{x}.\left(\mathrm{2}−{x}^{\mathrm{2}} \right)}{\left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\right\} \\ $$$$=\frac{\mathrm{3}}{\mathrm{32}\sqrt{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{x}}{\:\sqrt{\mathrm{2}}}\right)+\frac{\mathrm{1}}{\mathrm{8}}.\frac{{x}}{\mathrm{2}+{x}^{\mathrm{2}} }.\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}.\frac{\mathrm{2}−{x}^{\mathrm{2}} }{\mathrm{2}+{x}^{\mathrm{2}} }\right) \\ $$$$=\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{64}}{tan}^{−\mathrm{1}} \left(\frac{{x}\sqrt{\mathrm{2}}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{8}}.\frac{{x}}{\mathrm{2}+{x}^{\mathrm{2}} }\left(\frac{\mathrm{8}+\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}−{x}^{\mathrm{2}} }{\mathrm{8}+\mathrm{4}{x}^{\mathrm{2}} }\right) \\ $$$$=\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{64}}{tan}^{−\mathrm{1}} \left(\frac{{x}\sqrt{\mathrm{2}}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{8}}.\frac{{x}}{\mathrm{2}+{x}^{\mathrm{2}} }.\left(\frac{\mathrm{10}+\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{8}+\mathrm{4}{x}^{\mathrm{2}} }\right) \\ $$$$\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{64}}{tan}^{−\mathrm{1}} \left(\frac{{x}\sqrt{\mathrm{2}}}{\mathrm{2}}\right)+\frac{{x}\left(\mathrm{10}+\mathrm{3}{x}^{\mathrm{2}} \right)}{\left(\mathrm{16}+\mathrm{8}{x}^{\mathrm{2}} \right)\left(\mathrm{8}+\mathrm{4}{x}^{\mathrm{2}} \right)} \\ $$
Answered by MJS last updated on 16/Aug/18
$$\mathrm{reduction}\:\mathrm{formula}: \\ $$$$\int\frac{{dx}}{\left({ax}^{\mathrm{2}} +{b}\right)^{{n}} }=\frac{{x}}{\mathrm{2}{b}\left({n}−\mathrm{1}\right)\left({ax}^{\mathrm{2}} +{b}\right)^{{n}−\mathrm{1}} }+\frac{\mathrm{2}{n}−\mathrm{3}}{\mathrm{2}{b}\left({n}−\mathrm{1}\right)}\int\frac{{dx}}{\left({ax}^{\mathrm{2}} +{b}\right)^{{n}−\mathrm{1}} } \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case} \\ $$$$\left(\mathrm{1}\right)\:{a}=\mathrm{1}\:\:{b}=\mathrm{2}\:\:{n}=\mathrm{3} \\ $$$$\frac{{x}}{\mathrm{8}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{8}}\int\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$\left(\mathrm{2}\right)\:{a}=\mathrm{1}\:\:{b}=\mathrm{2}\:\:{n}=\mathrm{2} \\ $$$$\frac{{x}}{\mathrm{8}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\frac{\mathrm{3}{x}}{\mathrm{32}\left({x}^{\mathrm{2}} +\mathrm{2}\right)}+\frac{\mathrm{3}}{\mathrm{32}}\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}} \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{2}} +{c}}=\frac{\sqrt{{c}}}{{c}}\mathrm{arctan}\:\frac{{x}\sqrt{{c}}}{{c}} \\ $$$$\frac{{x}}{\mathrm{8}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\frac{\mathrm{3}{x}}{\mathrm{32}\left({x}^{\mathrm{2}} +\mathrm{2}\right)}+\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{64}}\mathrm{arctan}\:\frac{{x}\sqrt{\mathrm{2}}}{\mathrm{2}}\:+{C} \\ $$$$\frac{{x}\left(\mathrm{3}{x}^{\mathrm{2}} +\mathrm{10}\right)}{\mathrm{32}\left({x}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} }+\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{64}}\mathrm{arctan}\:\frac{{x}\sqrt{\mathrm{2}}}{\mathrm{2}}\:+{C} \\ $$