Menu Close

Question-42331




Question Number 42331 by AR Akash last updated on 23/Aug/18
Answered by $@ty@m last updated on 23/Aug/18
∵PQ=QR=RS  & OP=OQ=OR=OS  ∴ △ OPQ≅△OQR≅△ORS  by SSS  ∴∠PQO=∠OQR=70^o   ∴∠PAQ=20^o  .....Ans (i)  Again  ∵ OQ=OR  ∴∠ORQ=70^o   ⇒∠QOR=40^o   ⇒∠ROS=40^o ......Ans (iii)  ∠AOS=100^o   ∠OAS=40^o   ∴∠PAS=20^o +40^o =60^o  .....Ans. (ii)
$$\because{PQ}={QR}={RS} \\ $$$$\&\:{OP}={OQ}={OR}={OS} \\ $$$$\therefore\:\bigtriangleup\:{OPQ}\cong\bigtriangleup{OQR}\cong\bigtriangleup{ORS}\:\:{by}\:{SSS} \\ $$$$\therefore\angle{PQO}=\angle{OQR}=\mathrm{70}^{{o}} \\ $$$$\therefore\angle{PAQ}=\mathrm{20}^{{o}} \:…..{Ans}\:\left({i}\right) \\ $$$${Again} \\ $$$$\because\:{OQ}={OR} \\ $$$$\therefore\angle{ORQ}=\mathrm{70}^{{o}} \\ $$$$\Rightarrow\angle{QOR}=\mathrm{40}^{{o}} \\ $$$$\Rightarrow\angle{ROS}=\mathrm{40}^{{o}} ……{Ans}\:\left({iii}\right) \\ $$$$\angle{AOS}=\mathrm{100}^{{o}} \\ $$$$\angle{OAS}=\mathrm{40}^{{o}} \\ $$$$\therefore\angle{PAS}=\mathrm{20}^{{o}} +\mathrm{40}^{{o}} =\mathrm{60}^{{o}} \:…..{Ans}.\:\left({ii}\right) \\ $$$$ \\ $$
Commented by Vashu last updated on 24/Aug/18
how∠PAQ came ?explain
$${how}\angle{PAQ}\:{came}\:?{explain} \\ $$
Commented by $@ty@m last updated on 24/Aug/18
Angle of semi circle is a right angle.  ∴∠APQ=90^o   ∴∠PQA+∠PAQ=90^o   ⇒70^o +∠PAQ=90^o   ⇒∠PAQ=20^o
$${Angle}\:{of}\:{semi}\:{circle}\:{is}\:{a}\:{right}\:{angle}. \\ $$$$\therefore\angle{APQ}=\mathrm{90}^{{o}} \\ $$$$\therefore\angle{PQA}+\angle{PAQ}=\mathrm{90}^{{o}} \\ $$$$\Rightarrow\mathrm{70}^{{o}} +\angle{PAQ}=\mathrm{90}^{{o}} \\ $$$$\Rightarrow\angle{PAQ}=\mathrm{20}^{{o}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *