Menu Close

Question-42340




Question Number 42340 by ajfour last updated on 23/Aug/18
Commented by ajfour last updated on 23/Aug/18
Find r in terms of R and a.
$${Find}\:\boldsymbol{{r}}\:{in}\:{terms}\:{of}\:\boldsymbol{{R}}\:{and}\:\boldsymbol{{a}}. \\ $$
Commented by MJS last updated on 24/Aug/18
sorry I′m on holidays and don′t have internet  all the time...
$$\mathrm{sorry}\:\mathrm{I}'\mathrm{m}\:\mathrm{on}\:\mathrm{holidays}\:\mathrm{and}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{internet} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{time}… \\ $$
Commented by ajfour last updated on 25/Aug/18
no problem sir . enjoy !
$${no}\:{problem}\:{sir}\:.\:{enjoy}\:! \\ $$
Answered by ajfour last updated on 25/Aug/18
eq. of parabola    y=(x^2 /(4a))  eq. of  smaller circle                  x^2 +(y−2R+r)^2 =r^2   the small circle and parabola  have only one common value  of x^2 ; hence               x^2 +((x^2 /(4a))−2R+r)^2 =r^2    let x^2 =t  ; then    (t^2 /(16a^2 ))+[1−((2(2R−r))/(4a))]t +2R(2R−2r)=0  for just one value of t  ⇒ (([4a−2(2R−r)]^2 )/(16a^2 )) = ((8R(2R−2r))/(16a^2 ))  ⇒  4a^2 +(2R−r)^2 −4a(2R−r)                                    = 4R^2 −4rR  ⇒ r^2 +4ar+4a^2 −8aR  =0  ⇒   r =−2a+(√(4a^2 −4a^2 +8aR))  ⇒   r = (√(8aR))−2a       for  r=R         R^2 +4a^2 +4aR = 8aR  ⇒      R= 2a .
$${eq}.\:{of}\:{parabola}\:\:\:\:{y}=\frac{{x}^{\mathrm{2}} }{\mathrm{4}{a}} \\ $$$${eq}.\:{of}\:\:{smaller}\:{circle} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} +\left({y}−\mathrm{2}{R}+{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${the}\:{small}\:{circle}\:{and}\:{parabola} \\ $$$${have}\:{only}\:{one}\:{common}\:{value} \\ $$$${of}\:{x}^{\mathrm{2}} ;\:{hence} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} +\left(\frac{{x}^{\mathrm{2}} }{\mathrm{4}{a}}−\mathrm{2}{R}+{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\:{let}\:{x}^{\mathrm{2}} ={t}\:\:;\:{then} \\ $$$$\:\:\frac{{t}^{\mathrm{2}} }{\mathrm{16}{a}^{\mathrm{2}} }+\left[\mathrm{1}−\frac{\mathrm{2}\left(\mathrm{2}{R}−{r}\right)}{\mathrm{4}{a}}\right]{t}\:+\mathrm{2}{R}\left(\mathrm{2}{R}−\mathrm{2}{r}\right)=\mathrm{0} \\ $$$${for}\:{just}\:{one}\:{value}\:{of}\:{t} \\ $$$$\Rightarrow\:\frac{\left[\mathrm{4}{a}−\mathrm{2}\left(\mathrm{2}{R}−{r}\right)\right]^{\mathrm{2}} }{\mathrm{16}{a}^{\mathrm{2}} }\:=\:\frac{\mathrm{8}{R}\left(\mathrm{2}{R}−\mathrm{2}{r}\right)}{\mathrm{16}{a}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\mathrm{4}{a}^{\mathrm{2}} +\left(\mathrm{2}{R}−{r}\right)^{\mathrm{2}} −\mathrm{4}{a}\left(\mathrm{2}{R}−{r}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{4}{R}^{\mathrm{2}} −\mathrm{4}{rR} \\ $$$$\Rightarrow\:{r}^{\mathrm{2}} +\mathrm{4}{ar}+\mathrm{4}{a}^{\mathrm{2}} −\mathrm{8}{aR}\:\:=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{r}\:=−\mathrm{2}{a}+\sqrt{\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{a}^{\mathrm{2}} +\mathrm{8}{aR}} \\ $$$$\Rightarrow\:\:\:{r}\:=\:\sqrt{\mathrm{8}{aR}}−\mathrm{2}{a} \\ $$$$\:\:\:\:\:{for}\:\:{r}={R} \\ $$$$\:\:\:\:\:\:\:{R}^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} +\mathrm{4}{aR}\:=\:\mathrm{8}{aR} \\ $$$$\Rightarrow\:\:\:\:\:\:{R}=\:\mathrm{2}{a}\:. \\ $$
Commented by Tawa1 last updated on 25/Aug/18
Do you have your own textbook sir ???.   Expecially all those your  diagrams. I will love to learn them sir.   God bless you sir.  You, sir tammy and sir mrW3  are genius.  Keep the good work going sir.  God bless you sir.
$$\mathrm{Do}\:\mathrm{you}\:\mathrm{have}\:\mathrm{your}\:\mathrm{own}\:\mathrm{textbook}\:\mathrm{sir}\:???.\:\:\:\mathrm{Expecially}\:\mathrm{all}\:\mathrm{those}\:\mathrm{your} \\ $$$$\mathrm{diagrams}.\:\mathrm{I}\:\mathrm{will}\:\mathrm{love}\:\mathrm{to}\:\mathrm{learn}\:\mathrm{them}\:\mathrm{sir}.\:\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\mathrm{You},\:\mathrm{sir}\:\mathrm{tammy}\:\mathrm{and}\:\mathrm{sir}\:\mathrm{mrW3}\:\:\mathrm{are}\:\mathrm{genius}.\:\:\mathrm{Keep}\:\mathrm{the}\:\mathrm{good}\:\mathrm{work}\:\mathrm{going}\:\mathrm{sir}. \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\: \\ $$
Commented by ajfour last updated on 25/Aug/18
self created questions  pertains to mixture of topics  including application of deriatives,  coordinate geometry, quadratic,  geometry, and like..
$${self}\:{created}\:{questions} \\ $$$${pertains}\:{to}\:{mixture}\:{of}\:{topics} \\ $$$${including}\:{application}\:{of}\:{deriatives}, \\ $$$${coordinate}\:{geometry},\:{quadratic}, \\ $$$${geometry},\:{and}\:{like}.. \\ $$
Commented by Tawa1 last updated on 25/Aug/18
Sir the drawings are what topic
$$\mathrm{Sir}\:\mathrm{the}\:\mathrm{drawings}\:\mathrm{are}\:\mathrm{what}\:\mathrm{topic}\: \\ $$
Commented by Tawa1 last updated on 25/Aug/18
Wow !. That is great ...
$$\mathrm{Wow}\:!.\:\mathrm{That}\:\mathrm{is}\:\mathrm{great}\:… \\ $$
Commented by ajfour last updated on 25/Aug/18
you can save my questions from  this tinkutara forum (topic-geometry  or coordinate geometry).
$${you}\:{can}\:{save}\:{my}\:{questions}\:{from} \\ $$$${this}\:{tinkutara}\:{forum}\:\left({topic}-{geometry}\right. \\ $$$$\left.{or}\:{coordinate}\:{geometry}\right). \\ $$
Commented by Tawa1 last updated on 25/Aug/18
My phone is format, i will start saving from today.  And if you can share  me some past. i would appreciate it sir
$$\mathrm{My}\:\mathrm{phone}\:\mathrm{is}\:\mathrm{format},\:\mathrm{i}\:\mathrm{will}\:\mathrm{start}\:\mathrm{saving}\:\mathrm{from}\:\mathrm{today}.\:\:\mathrm{And}\:\mathrm{if}\:\mathrm{you}\:\mathrm{can}\:\mathrm{share} \\ $$$$\mathrm{me}\:\mathrm{some}\:\mathrm{past}.\:\mathrm{i}\:\mathrm{would}\:\mathrm{appreciate}\:\mathrm{it}\:\mathrm{sir} \\ $$
Answered by MrW3 last updated on 25/Aug/18
C(0,R)  I(0,h)  B(u,v)  eqn. of parabola:  y=(x^2 /(4a))  ⇒(dy/dx)=(x/(2a))  eqn. of small circle:  x^2 +(y−h)^2 =r^2   ⇒2x+2(y−h)(dy/dx)=0  ⇒2u+2(v−h)(u/(2a))=0  ⇒v=h−2a  v=(u^2 /(4a))⇒u^2 =4a(h−2a)  h+r=2R⇒h=2R−r  u^2 +(v−h)^2 =r^2   ⇒4a(h−2a)+(h−2a−h)^2 =r^2   ⇒4ah−4a^2 =r^2   ⇒4a(2R−r)−4a^2 =r^2   ⇒8aR−4ar−4a^2 =r^2   ⇒r^2 +4ar−4a(2R−a)=0  ⇒r=((−4a+(√(16a^2 +4×4a(2R−a))))/2)  ⇒r=2((√(2aR))−a)    such that r=R,  r=2((√(2aR))−a)=R  2(√(2aR))=R+2a  (2a−R)^2 =0  ⇒a=(R/2)
$${C}\left(\mathrm{0},{R}\right) \\ $$$${I}\left(\mathrm{0},{h}\right) \\ $$$${B}\left({u},{v}\right) \\ $$$${eqn}.\:{of}\:{parabola}: \\ $$$${y}=\frac{{x}^{\mathrm{2}} }{\mathrm{4}{a}} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}=\frac{{x}}{\mathrm{2}{a}} \\ $$$${eqn}.\:{of}\:{small}\:{circle}: \\ $$$${x}^{\mathrm{2}} +\left({y}−{h}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}{x}+\mathrm{2}\left({y}−{h}\right)\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}{u}+\mathrm{2}\left({v}−{h}\right)\frac{{u}}{\mathrm{2}{a}}=\mathrm{0} \\ $$$$\Rightarrow{v}={h}−\mathrm{2}{a} \\ $$$${v}=\frac{{u}^{\mathrm{2}} }{\mathrm{4}{a}}\Rightarrow{u}^{\mathrm{2}} =\mathrm{4}{a}\left({h}−\mathrm{2}{a}\right) \\ $$$${h}+{r}=\mathrm{2}{R}\Rightarrow{h}=\mathrm{2}{R}−{r} \\ $$$${u}^{\mathrm{2}} +\left({v}−{h}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}{a}\left({h}−\mathrm{2}{a}\right)+\left({h}−\mathrm{2}{a}−{h}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}{ah}−\mathrm{4}{a}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4}{a}\left(\mathrm{2}{R}−{r}\right)−\mathrm{4}{a}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{8}{aR}−\mathrm{4}{ar}−\mathrm{4}{a}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow{r}^{\mathrm{2}} +\mathrm{4}{ar}−\mathrm{4}{a}\left(\mathrm{2}{R}−{a}\right)=\mathrm{0} \\ $$$$\Rightarrow{r}=\frac{−\mathrm{4}{a}+\sqrt{\mathrm{16}{a}^{\mathrm{2}} +\mathrm{4}×\mathrm{4}{a}\left(\mathrm{2}{R}−{a}\right)}}{\mathrm{2}} \\ $$$$\Rightarrow{r}=\mathrm{2}\left(\sqrt{\mathrm{2}{aR}}−{a}\right) \\ $$$$ \\ $$$${such}\:{that}\:{r}={R}, \\ $$$${r}=\mathrm{2}\left(\sqrt{\mathrm{2}{aR}}−{a}\right)={R} \\ $$$$\mathrm{2}\sqrt{\mathrm{2}{aR}}={R}+\mathrm{2}{a} \\ $$$$\left(\mathrm{2}{a}−{R}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{a}=\frac{{R}}{\mathrm{2}} \\ $$
Commented by ajfour last updated on 25/Aug/18
thank you Sir, too good;
$${thank}\:{you}\:{Sir},\:{too}\:{good}; \\ $$
Commented by Tawa1 last updated on 24/Aug/18
God bless you sir.   Sir which topic can i learn diagrams like sir Ajfour always sent
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\: \\ $$$$\mathrm{Sir}\:\mathrm{which}\:\mathrm{topic}\:\mathrm{can}\:\mathrm{i}\:\mathrm{learn}\:\mathrm{diagrams}\:\mathrm{like}\:\mathrm{sir}\:\mathrm{Ajfour}\:\mathrm{always}\:\mathrm{sent} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *