Menu Close

Question-42352




Question Number 42352 by Raj Singh last updated on 24/Aug/18
Answered by tanmay.chaudhury50@gmail.com last updated on 24/Aug/18
∠AOC=∠BOD=2x (vertically opposite angle voa)  ∠AOB=∠COD  =2y(voa)  2x+2y+2x+2y=360^o   x+y+x+y=180^o   x=(1/2)∠AOC    x=(1/2)∠BOD  2y=∠AOB  so x+2y+x=180^o   (1/2)∠AOC+∠AOB+(1/2)∠BOD=180^o   ∠POA+∠AOB+∠BOQ=180^o   so OP and OQ on the same line ...since  ∠POQ is =180^o
$$\angle{AOC}=\angle{BOD}=\mathrm{2}{x}\:\left({vertically}\:{opposite}\:{angle}\:{voa}\right) \\ $$$$\angle{AOB}=\angle{COD}\:\:=\mathrm{2}{y}\left({voa}\right) \\ $$$$\mathrm{2}{x}+\mathrm{2}{y}+\mathrm{2}{x}+\mathrm{2}{y}=\mathrm{360}^{{o}} \\ $$$${x}+{y}+{x}+{y}=\mathrm{180}^{{o}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\angle{AOC}\:\:\:\:{x}=\frac{\mathrm{1}}{\mathrm{2}}\angle{BOD} \\ $$$$\mathrm{2}{y}=\angle{AOB} \\ $$$${so}\:{x}+\mathrm{2}{y}+{x}=\mathrm{180}^{{o}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\angle{AOC}+\angle{AOB}+\frac{\mathrm{1}}{\mathrm{2}}\angle{BOD}=\mathrm{180}^{{o}} \\ $$$$\angle{POA}+\angle{AOB}+\angle{BOQ}=\mathrm{180}^{{o}} \\ $$$${so}\:{OP}\:{and}\:{OQ}\:{on}\:{the}\:{same}\:{line}\:…{since} \\ $$$$\angle{POQ}\:{is}\:=\mathrm{180}^{{o}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *