Menu Close

Question-42559




Question Number 42559 by Tawa1 last updated on 27/Aug/18
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Aug/18
15)a+(1/a)=((√a) −(1/( (√a))))^2 +2   so a+(1/a)=2 if ((√a) −(1/( (√a) )))=0  a+(1/a)>2 if((√a) −(1/( (√a))))>0
$$\left.\mathrm{15}\right){a}+\frac{\mathrm{1}}{{a}}=\left(\sqrt{{a}}\:−\frac{\mathrm{1}}{\:\sqrt{{a}}}\right)^{\mathrm{2}} +\mathrm{2}\: \\ $$$${so}\:{a}+\frac{\mathrm{1}}{{a}}=\mathrm{2}\:{if}\:\left(\sqrt{{a}}\:−\frac{\mathrm{1}}{\:\sqrt{{a}}\:}\right)=\mathrm{0} \\ $$$${a}+\frac{\mathrm{1}}{{a}}>\mathrm{2}\:{if}\left(\sqrt{{a}}\:−\frac{\mathrm{1}}{\:\sqrt{{a}}}\right)>\mathrm{0} \\ $$$$ \\ $$
Commented by Tawa1 last updated on 27/Aug/18
So, that is all, God bless you sir. i really appreciate
$$\mathrm{So},\:\mathrm{that}\:\mathrm{is}\:\mathrm{all},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Aug/18
AM≥GM  (a+b)((1/a)+(1/b))  ((a+b)/2)≥(√(ab))   (((1/a)+(1/b))/2)≥(√((1/a)×(1/b)))   multiply  ((a+b)/2)×(((1/a)+(1/b))/2)≥1    (a+b)((1/a)+(1/b))≥4
$${AM}\geqslant{GM} \\ $$$$\left({a}+{b}\right)\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\right) \\ $$$$\frac{{a}+{b}}{\mathrm{2}}\geqslant\sqrt{{ab}}\: \\ $$$$\frac{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}}{\mathrm{2}}\geqslant\sqrt{\frac{\mathrm{1}}{{a}}×\frac{\mathrm{1}}{{b}}}\: \\ $$$${multiply} \\ $$$$\frac{{a}+{b}}{\mathrm{2}}×\frac{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}}{\mathrm{2}}\geqslant\mathrm{1}\:\:\:\:\left({a}+{b}\right)\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}\right)\geqslant\mathrm{4} \\ $$
Commented by Tawa1 last updated on 27/Aug/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Aug/18
((a+b)/2)×((b+c)/2)×((c+a)/2)≥(√(ab)) ×(√(bc)) ×(√(ac))   (a+b)(b+c)(c+a)≥8abc
$$\frac{{a}+{b}}{\mathrm{2}}×\frac{{b}+{c}}{\mathrm{2}}×\frac{{c}+{a}}{\mathrm{2}}\geqslant\sqrt{{ab}}\:×\sqrt{{bc}}\:×\sqrt{{ac}}\: \\ $$$$\left({a}+{b}\right)\left({b}+{c}\right)\left({c}+{a}\right)\geqslant\mathrm{8}{abc} \\ $$
Commented by malwaan last updated on 29/Aug/18
good work  thanks alot
$$\mathrm{good}\:\mathrm{work} \\ $$$$\mathrm{thanks}\:\mathrm{alot} \\ $$
Commented by Tawa1 last updated on 27/Aug/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Aug/18
((a+b+c)/3)×(((1/a)+(1/b)+(1/c))/3)≥(√(abc)) ×(√(1/(abc)))   (a+b+c)((1/a)+(1/b)+(1/c))≥9
$$\frac{{a}+{b}+{c}}{\mathrm{3}}×\frac{\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}}{\mathrm{3}}\geqslant\sqrt{{abc}}\:×\sqrt{\frac{\mathrm{1}}{{abc}}}\: \\ $$$$\left({a}+{b}+{c}\right)\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right)\geqslant\mathrm{9} \\ $$
Commented by Tawa1 last updated on 27/Aug/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Aug/18
((a+b)/2)≥(√(ab))   (1/2)≥(√(ab))  1≥2(√(ab))  1≥4ab  a^2 +b^2   =(a+b)^2 −2ab  =1−2×(1/4)  =(1/2)    (
$$\frac{{a}+{b}}{\mathrm{2}}\geqslant\sqrt{{ab}}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\geqslant\sqrt{{ab}} \\ $$$$\mathrm{1}\geqslant\mathrm{2}\sqrt{{ab}} \\ $$$$\mathrm{1}\geqslant\mathrm{4}{ab} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$=\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{ab} \\ $$$$=\mathrm{1}−\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$\left(\right. \\ $$
Commented by Tawa1 last updated on 27/Aug/18
God bless you sir. I appreciate your time and effort
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}\:\mathrm{and}\:\mathrm{effort} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *