Menu Close

Question-42593




Question Number 42593 by aseerimad last updated on 28/Aug/18
Commented by maxmathsup by imad last updated on 28/Aug/18
we have I = ∫_0 ^(π/2)    ((cos^4 x +sin^4  x−sin^4 x)/(sin^4 x +cos^4 x))dx =(π/2) −∫_0 ^(π/2)   ((sin^4 x)/(sin^4 x +cos^4 x))dx but  changement x=(π/2)−t give ∫_0 ^(π/2)   ((sin^4 x)/(sin^4 x +cos^4 x))dx = ∫_0 ^(π/2)  ((cos^4 t)/(cos^4 x +sin^4 x))dt  =I ⇒ 2I =(π/2) ⇒ I =(π/4) .
wehaveI=0π2cos4x+sin4xsin4xsin4x+cos4xdx=π20π2sin4xsin4x+cos4xdxbutchangementx=π2tgive0π2sin4xsin4x+cos4xdx=0π2cos4tcos4x+sin4xdt=I2I=π2I=π4.
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Aug/18
I=∫_0 ^(Π/2) f(x)dx=∫_0 ^(Π/4) f((Π/2)−x)dx  I=∫_0 ^(Π/2) ((cos^4 x)/(sin^4 x+cos^4 x))dx=∫_0 ^(Π/4) ((cos^4 ((Π/2)−x))/(sin^4 ((Π/2)−x)+cos^4 ((Π/2)−x)))dx  I=∫_0 ^(Π/2) ((sin^4 x)/(cos^4 x+sin^4 x))dx  2I=∫_0 ^(Π/2) ((cos^4 x+sin^4 x)/(cos^4 x+sin^4 x))dx=∫_0 ^(Π/2)  dx  2I=∣x∣_0 ^(Π/2) =(Π/2)  I=(Π/4)
I=0Π2f(x)dx=0Π4f(Π2x)dxI=0Π2cos4xsin4x+cos4xdx=0Π4cos4(Π2x)sin4(Π2x)+cos4(Π2x)dxI=0Π2sin4xcos4x+sin4xdx2I=0Π2cos4x+sin4xcos4x+sin4xdx=0Π2dx2I=∣x0Π2=Π2I=Π4

Leave a Reply

Your email address will not be published. Required fields are marked *