Question-42593 Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42593 by aseerimad last updated on 28/Aug/18 Commented by maxmathsup by imad last updated on 28/Aug/18 wehaveI=∫0π2cos4x+sin4x−sin4xsin4x+cos4xdx=π2−∫0π2sin4xsin4x+cos4xdxbutchangementx=π2−tgive∫0π2sin4xsin4x+cos4xdx=∫0π2cos4tcos4x+sin4xdt=I⇒2I=π2⇒I=π4. Answered by tanmay.chaudhury50@gmail.com last updated on 28/Aug/18 I=∫0Π2f(x)dx=∫0Π4f(Π2−x)dxI=∫0Π2cos4xsin4x+cos4xdx=∫0Π4cos4(Π2−x)sin4(Π2−x)+cos4(Π2−x)dxI=∫0Π2sin4xcos4x+sin4xdx2I=∫0Π2cos4x+sin4xcos4x+sin4xdx=∫0Π2dx2I=∣x∣0Π2=Π2I=Π4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-42592Next Next post: Question-108133 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.