Question Number 42897 by Joel578 last updated on 04/Sep/18
Commented by Joel578 last updated on 04/Sep/18
$$\mathrm{For}\:\mathrm{question}\:\left({c}\right), \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{G}\left({x}\right)\:=\:\mathrm{2}\:\:\:\mathrm{or}\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{G}\left({x}\right)\:=\:\mathrm{0}\:? \\ $$
Answered by MJS last updated on 04/Sep/18
$$\mathrm{the}\:\mathrm{limit}\:\mathrm{is}\:\mathrm{1}\:\mathrm{although}\:{G}\left(\mathrm{0}\right)=\mathrm{0} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Sep/18
$$\left.{a}\right)\underset{{x}\rightarrow\mathrm{0}−} {\mathrm{lim}}\:{G}\left({x}\right)=\mathrm{1} \\ $$$$\left.{b}\right)\underset{{x}\rightarrow\mathrm{0}+} {\mathrm{lim}}\:{G}\left({x}\right)=\mathrm{1} \\ $$$${now}\:\underset{{x}\rightarrow\mathrm{0}−} {\mathrm{lim}}\:{G}\left({x}\right)\:{is}\:{called}\:{left}\:{hand}\:{side}\:{limit} \\ $$$$\underset{{x}\rightarrow\mathrm{0}+} {\mathrm{lim}}\:{G}\left({x}\right)\:{is}\:{called}\:{right}\:{hand}\:{side}\:{limit} \\ $$$${limit}\:{exist}\:{if}\:\underset{{x}\rightarrow\mathrm{0}−} {\mathrm{lim}}\:{G}\left({x}\right)\:\:=\underset{{x}\rightarrow\mathrm{0}+} {\mathrm{lim}}\:{G}\left({x}\right) \\ $$$${that}\:{is}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{G}\left({x}\right)=\underset{{x}\rightarrow\mathrm{0}−} {\mathrm{lim}}\:{G}\left({x}\right)\:=\underset{{x}\rightarrow\mathrm{0}+} {\mathrm{lim}}\:{G}\left({x}\right) \\ $$$${here}\:\underset{{x}\rightarrow\mathrm{0}−} {\mathrm{lim}}\:{G}\left({x}\right)=\mathrm{1}=\underset{{x}\rightarrow\mathrm{0}+} {\mathrm{lim}}\:{G}\left({x}\right) \\ $$$${so}\:{the}\:{value}\:{of}\:\underset{{x}\rightarrow\mathrm{0}\:\:} {\mathrm{lim}}\:{G}\left({x}\right)=\mathrm{1} \\ $$$$\left.{so}\:{c}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{G}\left({x}\right)\:=\mathrm{1} \\ $$$${but}\:{the}\:{function}\:{is}\:{discontinue}\:{at}\:{x}=\:\mathrm{0} \\ $$$${so}\:{G}\left(\mathrm{0}\right)\:{can}\:{not}\:{be}\:{found}\:{out} \\ $$$${we}\:{can}\:{not}\:{find}\:{the}\:{value}\:{of}\:{G}\left({x}\right)\:{at}\:{x}=\mathrm{0} \\ $$$$\left.{d}\right){can}\:{not}\:{be}\:{find}\:{the}\:{value}\:{of}\:{G}\left({x}\right)\:{at}\:{x}=\mathrm{0} \\ $$$${that}\:{is}\:{G}\left(\mathrm{0}\right)\:{not}\:{defined} \\ $$$${the}\:{curve}\:{G}\left({x}\right)\:{is}\:{discontinue}\:{at}\:{x}=\mathrm{0} \\ $$$${further}\:{we}\:{can}\:{say}\:{G}\left({x}\right)\:{is}\:{discontinue}\:{at}\:{x}=\mathrm{0} \\ $$$${we}\:{can}\:{not}\:{find}\:\frac{{dG}\left({x}\right)}{{dx}}\:{at}\:{x}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\left.{c}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{G}\left({x}\right)=\underset{{x}\rightarrow\mathrm{0}−} {\mathrm{li}}\underset{{x}\rightarrow\mathrm{0}} {\mathrm{li}} \\ $$
Commented by Joel578 last updated on 04/Sep/18
$$\mathrm{Okay},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{for}\:\mathrm{clearing}\:\mathrm{my}\:\mathrm{doubt} \\ $$