Menu Close

Question-43031




Question Number 43031 by aseerimad last updated on 06/Sep/18
Commented by MrW3 last updated on 06/Sep/18
8!×(9+C_2 ^9 )=8!×45=5×9!=1814400
$$\mathrm{8}!×\left(\mathrm{9}+{C}_{\mathrm{2}} ^{\mathrm{9}} \right)=\mathrm{8}!×\mathrm{45}=\mathrm{5}×\mathrm{9}!=\mathrm{1814400} \\ $$
Commented by MrW3 last updated on 07/Sep/18
Explanation:  We arrange at first the other 8 speakers,  there are 8! ways to do this.  There are two methods to arrange the   speakers A and B then:  method 1: A and B are next to each other. There  are 9 possibilities. E.g. XXXXXXBAXX,  or XXXXXXXXBA orBAXXXXXXXX.  method 2: A and B are separated by at  least one of the other 8 people. We  can place A and B in 9 possible positions.  There are C_2 ^9  ways. E.g. XXBXXXXAXX,  or XXXXXXXBXA or BXXXXXXXXA.  Thus the result is  8!×(9+C_2 ^9 )=8!×45=5×9!    Generally in case of n people:  (n−2)!×[(n−1)+C_2 ^(n−1) ]  =(n−2)!×[(n−1)+(((n−1)(n−2))/2)]  =((n(n−1)(n−2)!)/2)  =((n!)/2)
$${Explanation}: \\ $$$${We}\:{arrange}\:{at}\:{first}\:{the}\:{other}\:\mathrm{8}\:{speakers}, \\ $$$${there}\:{are}\:\mathrm{8}!\:{ways}\:{to}\:{do}\:{this}. \\ $$$${There}\:{are}\:{two}\:{methods}\:{to}\:{arrange}\:{the}\: \\ $$$${speakers}\:{A}\:{and}\:{B}\:{then}: \\ $$$${method}\:\mathrm{1}:\:{A}\:{and}\:{B}\:{are}\:{next}\:{to}\:{each}\:{other}.\:{There} \\ $$$${are}\:\mathrm{9}\:{possibilities}.\:{E}.{g}.\:{XXXXXXBAXX}, \\ $$$${or}\:{XXXXXXXXBA}\:{orBAXXXXXXXX}. \\ $$$${method}\:\mathrm{2}:\:{A}\:{and}\:{B}\:{are}\:{separated}\:{by}\:{at} \\ $$$${least}\:{one}\:{of}\:{the}\:{other}\:\mathrm{8}\:{people}.\:{We} \\ $$$${can}\:{place}\:{A}\:{and}\:{B}\:{in}\:\mathrm{9}\:{possible}\:{positions}. \\ $$$${There}\:{are}\:{C}_{\mathrm{2}} ^{\mathrm{9}} \:{ways}.\:{E}.{g}.\:{XXBXXXXAXX}, \\ $$$${or}\:{XXXXXXXBXA}\:{or}\:{BXXXXXXXXA}. \\ $$$${Thus}\:{the}\:{result}\:{is} \\ $$$$\mathrm{8}!×\left(\mathrm{9}+{C}_{\mathrm{2}} ^{\mathrm{9}} \right)=\mathrm{8}!×\mathrm{45}=\mathrm{5}×\mathrm{9}! \\ $$$$ \\ $$$${Generally}\:{in}\:{case}\:{of}\:{n}\:{people}: \\ $$$$\left({n}−\mathrm{2}\right)!×\left[\left({n}−\mathrm{1}\right)+{C}_{\mathrm{2}} ^{{n}−\mathrm{1}} \right] \\ $$$$=\left({n}−\mathrm{2}\right)!×\left[\left({n}−\mathrm{1}\right)+\frac{\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)}{\mathrm{2}}\right] \\ $$$$=\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)!}{\mathrm{2}} \\ $$$$=\frac{{n}!}{\mathrm{2}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Sep/18
arrangement of speaker like                supose 1)B is first speaker then A can be any  position out of remaining 9 so  permutation is 1×9×8!  here 1 for B and  8! remaining 8speaker  2)when B second speaker A can be 3rd 4th...10th  so 1×8×8!  3)when B third speaker A  can be 4th 5th...10th  1×7×8!  4) when B 4th speaker A can be 5th 6th...10th  1×6×8!  5)when B 5th soeaker A can be 6th 7th...10th=1  1×5×8!  6)when B 6th speaker A can be 7th 8th..10th  1×4×8!  7)when B 7th speaker A can be 8th 9th 10th  1×3×8!  8)when B 8th speaker A[can be[9th 10th  1×2×8!  9)when B 9th speaker A can be 10th  1×1×8!  so ans is   1×8!(9+8+7+6+5+4+3+2+1)  =1×8!×(9/2){2×9+(9−1)×−1}  =1×8!×(9/2)(18−8)  =8!×9×5  =9!×5
$${arrangement}\:{of}\:{speaker}\:{like} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\left.{supose}\:\mathrm{1}\right){B}\:{is}\:{first}\:{speaker}\:{then}\:{A}\:{can}\:{be}\:{any} \\ $$$${position}\:{out}\:{of}\:{remaining}\:\mathrm{9}\:{so} \\ $$$${permutation}\:{is}\:\mathrm{1}×\mathrm{9}×\mathrm{8}! \\ $$$${here}\:\mathrm{1}\:{for}\:{B}\:{and}\:\:\mathrm{8}!\:{remaining}\:\mathrm{8}{speaker} \\ $$$$\left.\mathrm{2}\right){when}\:{B}\:{second}\:{speaker}\:{A}\:{can}\:{be}\:\mathrm{3}{rd}\:\mathrm{4}{th}…\mathrm{10}{th} \\ $$$${so}\:\mathrm{1}×\mathrm{8}×\mathrm{8}! \\ $$$$\left.\mathrm{3}\right){when}\:{B}\:{third}\:{speaker}\:{A}\:\:{can}\:{be}\:\mathrm{4}{th}\:\mathrm{5}{th}…\mathrm{10}{th} \\ $$$$\mathrm{1}×\mathrm{7}×\mathrm{8}! \\ $$$$\left.\mathrm{4}\right)\:{when}\:{B}\:\mathrm{4}{th}\:{speaker}\:{A}\:{can}\:{be}\:\mathrm{5}{th}\:\mathrm{6}{th}…\mathrm{10}{th} \\ $$$$\mathrm{1}×\mathrm{6}×\mathrm{8}! \\ $$$$\left.\mathrm{5}\right){when}\:{B}\:\mathrm{5}{th}\:{soeaker}\:{A}\:{can}\:{be}\:\mathrm{6}{th}\:\mathrm{7}{th}…\mathrm{10}{th}=\mathrm{1} \\ $$$$\mathrm{1}×\mathrm{5}×\mathrm{8}! \\ $$$$\left.\mathrm{6}\right){when}\:{B}\:\mathrm{6}{th}\:{speaker}\:{A}\:{can}\:{be}\:\mathrm{7}{th}\:\mathrm{8}{th}..\mathrm{10}{th} \\ $$$$\mathrm{1}×\mathrm{4}×\mathrm{8}! \\ $$$$\left.\mathrm{7}\right){when}\:{B}\:\mathrm{7}{th}\:{speaker}\:{A}\:{can}\:{be}\:\mathrm{8}{th}\:\mathrm{9}{th}\:\mathrm{10}{th} \\ $$$$\mathrm{1}×\mathrm{3}×\mathrm{8}! \\ $$$$\left.\mathrm{8}\right){when}\:{B}\:\mathrm{8}{th}\:{speaker}\:{A}\left[{can}\:{be}\left[\mathrm{9}{th}\:\mathrm{10}{th}\right.\right. \\ $$$$\mathrm{1}×\mathrm{2}×\mathrm{8}! \\ $$$$\left.\mathrm{9}\right){when}\:{B}\:\mathrm{9}{th}\:{speaker}\:{A}\:{can}\:{be}\:\mathrm{10}{th} \\ $$$$\mathrm{1}×\mathrm{1}×\mathrm{8}! \\ $$$${so}\:{ans}\:{is}\: \\ $$$$\mathrm{1}×\mathrm{8}!\left(\mathrm{9}+\mathrm{8}+\mathrm{7}+\mathrm{6}+\mathrm{5}+\mathrm{4}+\mathrm{3}+\mathrm{2}+\mathrm{1}\right) \\ $$$$=\mathrm{1}×\mathrm{8}!×\frac{\mathrm{9}}{\mathrm{2}}\left\{\mathrm{2}×\mathrm{9}+\left(\mathrm{9}−\mathrm{1}\right)×−\mathrm{1}\right\} \\ $$$$=\mathrm{1}×\mathrm{8}!×\frac{\mathrm{9}}{\mathrm{2}}\left(\mathrm{18}−\mathrm{8}\right) \\ $$$$=\mathrm{8}!×\mathrm{9}×\mathrm{5} \\ $$$$=\mathrm{9}!×\mathrm{5} \\ $$
Answered by MrW3 last updated on 06/Sep/18
Here is an easy solution:  To arrange 10 people there are 10! ways.  The number of arrangements with  A before B is the same as the number  of arrangements with A behind B.   Thus the solution is ((10!)/2)=1814400.
$${Here}\:{is}\:{an}\:{easy}\:{solution}: \\ $$$${To}\:{arrange}\:\mathrm{10}\:{people}\:{there}\:{are}\:\mathrm{10}!\:{ways}. \\ $$$${The}\:{number}\:{of}\:{arrangements}\:{with} \\ $$$${A}\:{before}\:{B}\:{is}\:{the}\:{same}\:{as}\:{the}\:{number} \\ $$$${of}\:{arrangements}\:{with}\:{A}\:{behind}\:{B}.\: \\ $$$${Thus}\:{the}\:{solution}\:{is}\:\frac{\mathrm{10}!}{\mathrm{2}}=\mathrm{1814400}. \\ $$
Commented by ajfour last updated on 07/Sep/18
excellent Sir.
$${excellent}\:{Sir}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 07/Sep/18
yes sir...thank you...
$${yes}\:{sir}…{thank}\:{you}… \\ $$
Commented by malwaan last updated on 07/Sep/18
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *