Question Number 43131 by ajfour last updated on 07/Sep/18
Commented by ajfour last updated on 07/Sep/18
$${Q}.\mathrm{43128}\:\:\left({A}\:{possible}\:{solution}\right) \\ $$
Answered by ajfour last updated on 07/Sep/18
$${Area}=\frac{{y}}{\mathrm{2}}\left[\sqrt{\mathrm{64}−\left(\frac{\mathrm{15}}{\mathrm{2}{y}}+\frac{{y}}{\mathrm{2}}\right)^{\mathrm{2}} }\:+\sqrt{\mathrm{121}−\left(\frac{\mathrm{85}}{\mathrm{2}{y}}+\frac{{y}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\right] \\ $$$${where}\:{y}\in\:\left[\mathrm{5},\mathrm{15}\right]\:. \\ $$
Answered by ajfour last updated on 07/Sep/18
$${let}\:{presently}\:{OP}\:=\:{y}\:=\:\boldsymbol{{b}} \\ $$$${point}\:{A}\:{is}\:{intersection}\:{of} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{64}\:\:\:{and} \\ $$$${x}^{\mathrm{2}} +\left({y}−{b}\right)^{\mathrm{2}} =\mathrm{49} \\ $$$$\Rightarrow\:\:{b}\left(\mathrm{2}{y}_{{A}} −{b}\right)=\mathrm{15} \\ $$$$\:{y}_{{A}} =\frac{\mathrm{15}}{\mathrm{2}{b}}+\frac{{b}}{\mathrm{2}}\:\: \\ $$$$\Rightarrow\:\:{x}_{{A}} =\sqrt{\mathrm{64}−\left(\frac{\mathrm{15}}{\mathrm{2}{b}}+\frac{{b}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\:\:..\left({i}\right) \\ $$$${point}\:{B}\:{is}\:{the}\:{intersection}\:{of} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{121}\:\:\:{and} \\ $$$${x}^{\mathrm{2}} +\left({y}−{b}\right)^{\mathrm{2}} =\mathrm{36} \\ $$$$\Rightarrow\:\:{b}\left(\mathrm{2}{y}_{{B}} −{b}\right)=\mathrm{85} \\ $$$$\:\:{y}_{{B}} =\frac{\mathrm{85}}{\mathrm{2}{b}}+\frac{{b}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:{x}_{{B}} =\:\sqrt{\mathrm{121}−\left(\frac{\mathrm{85}}{\mathrm{2}{b}}+\frac{{b}}{\mathrm{2}}\right)^{\mathrm{2}} }\: \\ $$$${Area}\:=\:\frac{\boldsymbol{{b}}}{\mathrm{2}}\left(\boldsymbol{{x}}_{\boldsymbol{{A}}} +\boldsymbol{{x}}_{\boldsymbol{{B}}} \right) \\ $$$${Area}\:=\:\frac{\boldsymbol{{b}}}{\mathrm{2}}\left[\sqrt{\mathrm{64}−\left(\frac{\mathrm{15}}{\mathrm{2}{b}}+\frac{{b}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\sqrt{\mathrm{121}−\left(\frac{\mathrm{85}}{\mathrm{2}{b}}+\frac{{b}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\right] \\ $$$${Replacing}\:\boldsymbol{{b}}\:{by}\:{y} \\ $$$${Area}\:=\:\frac{{y}}{\mathrm{2}}\left[\sqrt{\mathrm{64}−\left(\frac{\mathrm{15}}{\mathrm{2}{y}}+\frac{{y}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\sqrt{\mathrm{121}−\left(\frac{\mathrm{85}}{\mathrm{2}{y}}+\frac{{y}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\right]. \\ $$$$ \\ $$