Menu Close

Question-43159




Question Number 43159 by MASANJA J last updated on 07/Sep/18
Answered by alex041103 last updated on 08/Sep/18
For ∫(dx/( (√(x+15)))) :  ∫(dx/( (√(x+15)))) = ∫((d(x+15))/( (√(x+15))))=∫u^(−1/2) du=  =2u^(1/2) +C=2(√(x+15)) +C    For ∫((ln(x)dx)/((1+x)^2 )) see Q.43191
$${For}\:\int\frac{{dx}}{\:\sqrt{{x}+\mathrm{15}}}\:: \\ $$$$\int\frac{{dx}}{\:\sqrt{{x}+\mathrm{15}}}\:=\:\int\frac{{d}\left({x}+\mathrm{15}\right)}{\:\sqrt{{x}+\mathrm{15}}}=\int{u}^{−\mathrm{1}/\mathrm{2}} {du}= \\ $$$$=\mathrm{2}{u}^{\mathrm{1}/\mathrm{2}} +{C}=\mathrm{2}\sqrt{{x}+\mathrm{15}}\:+{C} \\ $$$$ \\ $$$${For}\:\int\frac{{ln}\left({x}\right){dx}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\:{see}\:{Q}.\mathrm{43191} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *