Menu Close

Question-43205




Question Number 43205 by Tawa1 last updated on 08/Sep/18
Answered by $@ty@m last updated on 08/Sep/18
∵∠SRQ=∠RTS (alternate segment theorem)  ∴∠SRQ=28^o   We have  ∠VRM+∠VRS+∠SRQ=180^o   ⇒46^o +∠VRS+28^o =180^o   ⇒∠VRS+106^o =180^o ...(1)  We know that opposite angles of  a cyclic quadrilateral are supplementary.  ∴ ∠VRS+∠VUS=180^o ....(2)  From (1) &(2),  we get  ∠VUS=106^o  Ans.
$$\because\angle{SRQ}=\angle{RTS}\:\left({alternate}\:{segment}\:{theorem}\right) \\ $$$$\therefore\angle{SRQ}=\mathrm{28}^{\mathrm{o}} \\ $$$${We}\:{have} \\ $$$$\angle{VRM}+\angle{VRS}+\angle{SRQ}=\mathrm{180}^{\mathrm{o}} \\ $$$$\Rightarrow\mathrm{46}^{\mathrm{o}} +\angle{VRS}+\mathrm{28}^{\mathrm{o}} =\mathrm{180}^{\mathrm{o}} \\ $$$$\Rightarrow\angle{VRS}+\mathrm{106}^{\mathrm{o}} =\mathrm{180}^{\mathrm{o}} …\left(\mathrm{1}\right) \\ $$$${We}\:{know}\:{that}\:{opposite}\:{angles}\:{of} \\ $$$${a}\:{cyclic}\:{quadrilateral}\:{are}\:{supplementary}. \\ $$$$\therefore\:\angle{VRS}+\angle{VUS}=\mathrm{180}^{\mathrm{o}} ….\left(\mathrm{2}\right) \\ $$$${From}\:\left(\mathrm{1}\right)\:\&\left(\mathrm{2}\right), \\ $$$${we}\:{get} \\ $$$$\angle{VUS}=\mathrm{106}^{\mathrm{o}} \:{Ans}. \\ $$
Commented by Tawa1 last updated on 08/Sep/18
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *