Menu Close

Question-43319




Question Number 43319 by Meritguide1234 last updated on 09/Sep/18
Answered by MJS last updated on 09/Sep/18
((8x+(8/x)+9)/((2x^3 +3x^2 +4x)^2 ))=((8x^2 +9x+8)/(x(2x^3 +3x^2 +4x)^2 ))=  =((8x^3 +9x^2 +8x)/((2x^4 +3x^3 +4x^2 )^2 ))=((f′(x))/(f(x)^2 ))  ∫((f′(x))/(f(x)^2 ))dx=−f(x)^(−1)   ∫((8x+(8/x)+9)/((2x^3 +3x^2 +4x)^2 ))dx=−(1/(2x^4 +3x^3 +4x^2 ))+C
$$\frac{\mathrm{8}{x}+\frac{\mathrm{8}}{{x}}+\mathrm{9}}{\left(\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}\right)^{\mathrm{2}} }=\frac{\mathrm{8}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{8}}{{x}\left(\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}\right)^{\mathrm{2}} }= \\ $$$$=\frac{\mathrm{8}{x}^{\mathrm{3}} +\mathrm{9}{x}^{\mathrm{2}} +\mathrm{8}{x}}{\left(\mathrm{2}{x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{{f}'\left({x}\right)}{{f}\left({x}\right)^{\mathrm{2}} } \\ $$$$\int\frac{{f}'\left({x}\right)}{{f}\left({x}\right)^{\mathrm{2}} }{dx}=−{f}\left({x}\right)^{−\mathrm{1}} \\ $$$$\int\frac{\mathrm{8}{x}+\frac{\mathrm{8}}{{x}}+\mathrm{9}}{\left(\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}{x}\right)^{\mathrm{2}} }{dx}=−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{3}} +\mathrm{4}{x}^{\mathrm{2}} }+{C} \\ $$
Commented by Meritguide1234 last updated on 10/Sep/18
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *