Menu Close

Question-43322




Question Number 43322 by Raj Singh last updated on 09/Sep/18
Commented by maxmathsup by imad last updated on 11/Sep/18
let A = ∫     (dx/((x+1)^2 (x^2  +1))) let decompose F(x) = (1/((x+1)^2 (x^2  +1)))  F(x) = (a/(x+1)) +(b/((x+1)^2 )) +((cx +d)/(x^2  +1))  b =lim_(x→−1) (x+1)^2 F(x) =(1/2)  lim_(x→+∞)  xF(x) =0 =a+c ⇒c =−(1/2) ⇒F(x) =(a/(x+1)) +(1/(2(x+1)^2 )) +((−(1/2)x +d)/(x^2  +1))  F(o) =1 = a +(1/2) +d ⇒ a+d =(1/2)  F(2) =(1/(45)) = (a/3) +(1/(18)) +((d−1)/5) ⇒ 1 =15a +((45)/(18))  +9d−9 ⇒  1 =15a +(5/2) +9d−9 ⇒15a +9d =10−(5/2) =((15)/2) ⇒  15a +9((1/2)−a)=((15)/2) ⇒6a =((15)/2) −(9/2) =3 ⇒a=(1/2) ⇒d=0 ⇒  F(x)= (1/(2(x+1))) +(1/(2(x+1)^2 )) −(x/(2(1+x^2 ))) ⇒  A = ∫ F(x)dx =(1/2)ln∣x+1∣ −(1/(2(x+1))) −(1/4)ln(1+x^2 ) +c .
letA=dx(x+1)2(x2+1)letdecomposeF(x)=1(x+1)2(x2+1)F(x)=ax+1+b(x+1)2+cx+dx2+1b=limx1(x+1)2F(x)=12limx+xF(x)=0=a+cc=12F(x)=ax+1+12(x+1)2+12x+dx2+1F(o)=1=a+12+da+d=12F(2)=145=a3+118+d151=15a+4518+9d91=15a+52+9d915a+9d=1052=15215a+9(12a)=1526a=15292=3a=12d=0F(x)=12(x+1)+12(x+1)2x2(1+x2)A=F(x)dx=12lnx+112(x+1)14ln(1+x2)+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Sep/18
2)∫(dx/((x+1)^2 (x^2 +1)))  ∫(a/((x+1)))dx+∫(b/((x+1)^2 ))dx+∫((cx+d)/(x^2 +1))dx  now calculating a b c and d  (1/((x+1)^2 (x^2 +1)))=(a/(x+1))+(b/((x+1)^2 ))+((cx+d)/(x^2 +1))  1=a(x+1)(x^2 +1)+b(x^2 +1)+(cx+d)(x+1)^2    1=a(x^3 +x^2 +x+1)+b(x^2 +1)+(cx+d)(x^2 +2x+1)  1=a(x^3 +x^2 +x+1)+b(x^2 +1)+(cx^3 +2cx^2 +cx+dx^2 +2dx+d)  1=x^3 (a+c)+x^2 (a+b+2c+d)+x(a+c+2d)+(a+b+d)  a+c==0  a+b+2c+d=0    a+c+2d=0  a+b+d=1  a+c+d=0  0+d=0  d=0  a+b=1  a+b+2c+d=0  1+2c+0=0  c=((−1)/2)     a+c=0   a=−c  a=(1/2)   a=(1/2)   a+b=1   b=(1/2)   c=((−1)/2)   d=0  ∫(a/(x+1))dx+∫(b/((x+1)^2 ))+∫((cx)/(x^2 +1))dx  (1/2)∫(dx/(x+1))+(1/2)∫(dx/((x+1)^2 ))  + ((−1)/2)∫(dx/(x^2 +1))  (1/2)ln(x+1)+(1/2)×(((x+1)^(−1) )/(−1))−(1/2)tan^(−1) (x)+c  (1/2)ln(x+1)−(1/(2(x+1)))−(1/2)tan^(−1) (x)+c
2)dx(x+1)2(x2+1)a(x+1)dx+b(x+1)2dx+cx+dx2+1dxnowcalculatingabcandd1(x+1)2(x2+1)=ax+1+b(x+1)2+cx+dx2+11=a(x+1)(x2+1)+b(x2+1)+(cx+d)(x+1)21=a(x3+x2+x+1)+b(x2+1)+(cx+d)(x2+2x+1)1=a(x3+x2+x+1)+b(x2+1)+(cx3+2cx2+cx+dx2+2dx+d)1=x3(a+c)+x2(a+b+2c+d)+x(a+c+2d)+(a+b+d)a+c==0a+b+2c+d=0a+c+2d=0a+b+d=1a+c+d=00+d=0d=0a+b=1a+b+2c+d=01+2c+0=0c=12a+c=0a=ca=12a=12a+b=1b=12c=12d=0ax+1dx+b(x+1)2+cxx2+1dx12dxx+1+12dx(x+1)2+12dxx2+112ln(x+1)+12×(x+1)1112tan1(x)+c12ln(x+1)12(x+1)12tan1(x)+c

Leave a Reply

Your email address will not be published. Required fields are marked *