Menu Close

Question-43331




Question Number 43331 by ajfour last updated on 09/Sep/18
Commented by ajfour last updated on 09/Sep/18
Find equation of red parabola,  if it be reflection of y=x^2   in  the line y=mx+c .
Findequationofredparabola,ifitbereflectionofy=x2intheliney=mx+c.
Commented by ajfour last updated on 09/Sep/18
Commented by ajfour last updated on 09/Sep/18
p=((c+mh−k)/( (√(1+m^2 ))))  y−k = 2pcos θ  h−x = 2psin θ  tan 𝛉 = m  ⇒ x=h−((2m(c+mh−k))/(1+m^2 ))  and   y= k+((2(c+mh−k))/(1+m^2 ))  Lets consider a point P(h,k) of  red parabola.  ⇒  f(h,k)=0  let image of P (h,k) be I(x,y)  But  y=x^2     , ⇒   k+((2(c+mh−k))/(1+m^2 )) =[ h−((2m(c+mh−k))/(1+m^2 ))]^2   hence f(x,y) is  y+((2(c+mx−y))/(1+m^2 ))=[x−((2m(c+mx−y))/(1+m^2 ))]^2 .  Just to check  let m=1 , c=0  ⇒ x=y^2     (reflection of y=x^2 ) .
p=c+mhk1+m2yk=2pcosθhx=2psinθtan\boldsymbolθ=\boldsymbolm\boldsymbolx=\boldsymbolh2\boldsymbolm(\boldsymbolc+\boldsymbolmh\boldsymbolk)1+\boldsymbolm2and\boldsymboly=\boldsymbolk+2(\boldsymbolc+\boldsymbolmh\boldsymbolk)1+\boldsymbolm2LetsconsiderapointP(h,k)ofredparabola.f(h,k)=0letimageofP(h,k)beI(x,y)Buty=x2,\boldsymbolk+2(\boldsymbolc+\boldsymbolmh\boldsymbolk)1+\boldsymbolm2=[\boldsymbolh2\boldsymbolm(\boldsymbolc+\boldsymbolmh\boldsymbolk)1+\boldsymbolm2]2hencef(x,y)isy+2(c+mxy)1+m2=[x2m(c+mxy)1+m2]2.Justtocheckletm=1,c=0x=y2(reflectionofy=x2).
Commented by ajfour last updated on 10/Sep/18
Thank you Sir.
ThankyouSir.
Commented by MrW3 last updated on 09/Sep/18
correct sir.  Generally mirror image of point P(x,y) in  line ax+by+c=0 is point Q(u,v)with  u=x−((2a(ax+by+c))/(a^2 +b^2 ))  v=y−((2b(ax+by+c))/(a^2 +b^2 ))
correctsir.GenerallymirrorimageofpointP(x,y)inline\boldsymbolax+\boldsymbolby+\boldsymbolc=0ispointQ(u,v)withu=x2a(ax+by+c)a2+b2v=y2b(ax+by+c)a2+b2

Leave a Reply

Your email address will not be published. Required fields are marked *