Menu Close

Question-43348




Question Number 43348 by peter frank last updated on 10/Sep/18
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18
3)2((b/a)+(b/c))=(a/b)+(a/c)+(c/a)+(c/b)  p=(b/a)    q=(b/c)     (q/p)=(a/c)  (a/q)=(c/p)=r(say)  a=rq  c=pr  b=ap=(rq)p=pqr  b=qc=q(pr)=pqr  a=rq    b=pqr     c=pr  2((b/a)+(b/c))=(a/b)+(a/c)+(c/a)+(c/b)  2(((pqr)/(rq))+((pqr)/(pr)))=((rq)/(pqr))+((rq)/(pr))+((pr)/(rq))+((pr)/(pqr))  2(p+q)=(1/p)+(q/p)+(p/q)+(1/q)  2(p+q)=((p+q)/(pq))+((p^2 +q^2 )/(pq))  2pq(p+q)=p+q+p^2 +q^2   2pq(p+q)+2pq=p+q+p^2 +q^2 +2pq  2pq(p+q+1)=p+q+(p+q)^2   2pq(p+q+1)=(p+q)(1+p+q)  (p+q+1)(2pq−p−q)=0  when 2pq−p−q=0  2pq=p+q [p+q+1 can not be equsls to zero]    now    2pa=p+q  multiply both side by r  2pqr=pr+qr  2b=c+a [since pqr=b     pr=c    qr=a]  so b−a=c−b  hence a,b,c are in AP
$$\left.\mathrm{3}\right)\mathrm{2}\left(\frac{{b}}{{a}}+\frac{{b}}{{c}}\right)=\frac{{a}}{{b}}+\frac{{a}}{{c}}+\frac{{c}}{{a}}+\frac{{c}}{{b}} \\ $$$${p}=\frac{{b}}{{a}}\:\:\:\:{q}=\frac{{b}}{{c}}\:\:\:\:\:\frac{{q}}{{p}}=\frac{{a}}{{c}} \\ $$$$\frac{{a}}{{q}}=\frac{{c}}{{p}}={r}\left({say}\right) \\ $$$${a}={rq} \\ $$$${c}={pr} \\ $$$${b}={ap}=\left({rq}\right){p}={pqr} \\ $$$${b}={qc}={q}\left({pr}\right)={pqr} \\ $$$${a}={rq}\:\:\:\:{b}={pqr}\:\:\:\:\:{c}={pr} \\ $$$$\mathrm{2}\left(\frac{{b}}{{a}}+\frac{{b}}{{c}}\right)=\frac{{a}}{{b}}+\frac{{a}}{{c}}+\frac{{c}}{{a}}+\frac{{c}}{{b}} \\ $$$$\mathrm{2}\left(\frac{{pqr}}{{rq}}+\frac{{pqr}}{{pr}}\right)=\frac{{rq}}{{pqr}}+\frac{{rq}}{{pr}}+\frac{{pr}}{{rq}}+\frac{{pr}}{{pqr}} \\ $$$$\mathrm{2}\left({p}+{q}\right)=\frac{\mathrm{1}}{{p}}+\frac{{q}}{{p}}+\frac{{p}}{{q}}+\frac{\mathrm{1}}{{q}} \\ $$$$\mathrm{2}\left({p}+{q}\right)=\frac{{p}+{q}}{{pq}}+\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }{{pq}} \\ $$$$\mathrm{2}{pq}\left({p}+{q}\right)={p}+{q}+{p}^{\mathrm{2}} +{q}^{\mathrm{2}} \\ $$$$\mathrm{2}{pq}\left({p}+{q}\right)+\mathrm{2}{pq}={p}+{q}+{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +\mathrm{2}{pq} \\ $$$$\mathrm{2}{pq}\left({p}+{q}+\mathrm{1}\right)={p}+{q}+\left({p}+{q}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{pq}\left({p}+{q}+\mathrm{1}\right)=\left({p}+{q}\right)\left(\mathrm{1}+{p}+{q}\right) \\ $$$$\left({p}+{q}+\mathrm{1}\right)\left(\mathrm{2}{pq}−{p}−{q}\right)=\mathrm{0} \\ $$$${when}\:\mathrm{2}{pq}−{p}−{q}=\mathrm{0} \\ $$$$\mathrm{2}{pq}={p}+{q}\:\left[{p}+{q}+\mathrm{1}\:{can}\:{not}\:{be}\:{equsls}\:{to}\:{zero}\right] \\ $$$$ \\ $$$${now} \\ $$$$\:\:\mathrm{2}{pa}={p}+{q} \\ $$$${multiply}\:{both}\:{side}\:{by}\:{r} \\ $$$$\mathrm{2}{pqr}={pr}+{qr} \\ $$$$\mathrm{2}{b}={c}+{a}\:\left[{since}\:{pqr}={b}\:\:\:\:\:{pr}={c}\:\:\:\:{qr}={a}\right] \\ $$$${so}\:{b}−{a}={c}−{b} \\ $$$${hence}\:{a},{b},{c}\:{are}\:{in}\:{AP} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *