Menu Close

Question-43386




Question Number 43386 by ajfour last updated on 10/Sep/18
Commented by ajfour last updated on 10/Sep/18
If the two differently shaded  areas are equal, find slope m of  line, in terms of a.
Ifthetwodifferentlyshadedareasareequal,findslopemofline,intermsofa.
Commented by Tawa1 last updated on 10/Sep/18
Sir, please how did you draw the smoth curve using lekh diagram ?
Sir,pleasehowdidyoudrawthesmothcurveusinglekhdiagram?
Commented by ajfour last updated on 10/Sep/18
quickly moved finger like a  parabola (one branch long, other  short), (lekh recognised it),  copied it , flipped the copy  verical then horizontal and  joined the branch ends of   original and copied one, then  grouped them, then resized it.
quicklymovedfingerlikeaparabola(onebranchlong,othershort),(lekhrecognisedit),copiedit,flippedthecopyvericalthenhorizontalandjoinedthebranchendsoforiginalandcopiedone,thengroupedthem,thenresizedit.
Commented by Tawa1 last updated on 10/Sep/18
God bless you sir
Godblessyousir
Answered by MrW3 last updated on 10/Sep/18
y=x(x^2 −a^2 )  (dy/dx)=3x^2 −a^2   at x=0: tan θ_0 =−a^2     ⇒r sin θ=r cos θ(r^2  cos^2  θ−a^2 )  ⇒r^2 =((tan θ+a^2 )/(cos^2  θ))  A=∫_θ_0  ^(2π) ((r^2 dθ)/2)=(1/2)∫_θ_0  ^(2π) ((tan θ+a^2 )/(cos^2  θ)) dθ  =(1/2)∫_θ_0  ^(2π) (tan θ+a^2 ) d(tan θ)  =(1/2)[((tan^2  θ)/2)+a^2 tan θ]_θ_0  ^(2π)   =(1/2)[−(a^4 /2)+a^4 ]=(a^4 /4)  let tan θ_1 =m  A_1 =(1/2)[((tan^2  θ)/2)+a^2 tan θ]_θ_1  ^(2π)   =(1/2)[−((tan^2  θ_1 )/2)−a^2 tan θ_1 ]  =−(1/2)[(m^2 /2)+a^2 m]=(A/2)=(a^4 /8)  ⇒2m^2 +4a^2 m+a^4 =0  ⇒m=((−4a^2 ±(√(16a^4 −8a^4 )))/4)  = { ((−((2+(√2))/2)a^2 )),((−((2−(√2))/2)a^2 )) :}  since ∣θ_1 ∣<∣θ_0 ∣⇒∣m∣=∣tan θ_1 ∣<∣tan θ_0 ∣=a^2   the suitable solution is:  m=−((2−(√2))/2)a^2 ≈−0.293a^2
y=x(x2a2)dydx=3x2a2atx=0:tanθ0=a2rsinθ=rcosθ(r2cos2θa2)r2=tanθ+a2cos2θA=θ02πr2dθ2=12θ02πtanθ+a2cos2θdθ=12θ02π(tanθ+a2)d(tanθ)=12[tan2θ2+a2tanθ]θ02π=12[a42+a4]=a44lettanθ1=mA1=12[tan2θ2+a2tanθ]θ12π=12[tan2θ12a2tanθ1]=12[m22+a2m]=A2=a482m2+4a2m+a4=0m=4a2±16a48a44={2+22a2222a2sinceθ1∣<∣θ0∣⇒∣m∣=∣tanθ1∣<∣tanθ0∣=a2thesuitablesolutionis:m=222a20.293a2
Commented by ajfour last updated on 10/Sep/18
Thanks Sir, i got the same answer.
ThanksSir,igotthesameanswer.
Answered by ajfour last updated on 10/Sep/18
Intersection points of line  and curve:  y=mx=x(x^2 −a^2 )  ⇒ O(0,0) and P ((√(a^2 +m)) , y_P )  A=−∫_0 ^(  a) (x^3 −a^2 x)dx =−( (a^4 /4)−(a^4 /2))  ⇒ A=(a^4 /4)  ∫_0 ^(  (√(a^2 +m))) (mx−x^3 +a^2 x)dx = (a^4 /8) (=(A/2))  ⇒ ((m(a^2 +m))/2)−(((a^2 +m)^2 )/4)+((a^2 (a^2 +m))/2) = (a^4 /8)  ⇒ (a^2 +m)^2 = (a^4 /2)  ⇒  m= ((1/( (√2)))−1)a^2    same as  m= −(((2−(√2))/2))a^2  .  [  (dy/dx)∣_(x=0)  = −a^2  ; so we reject                   m=−(1+(1/( (√2))))a^2   ].
Intersectionpointsoflineandcurve:y=mx=x(x2a2)O(0,0)andP(a2+m,yP)A=0a(x3a2x)dx=(a44a42)A=a440a2+m(mxx3+a2x)dx=a48(=A2)m(a2+m)2(a2+m)24+a2(a2+m)2=a48(a2+m)2=a42m=(121)a2sameasm=(222)a2.[dydxx=0=a2;sowerejectm=(1+12)a2].
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18
solving mx=x(x^2 −a^2 )  x{m−(x^2 −a^2 }=0  x=0  x^2 −a^2 =m  x=±(√(a^2 +m))   y=mx intersect the curve at {−(√(a^2 +m))  ,0,(√(a^2 +m))  }  the curve y=x(x^2 −a^2 ) intersect x axis at{−a,0,a}  now area of dot shaded+line shaded=  ∫_0 ^a x(x^2 −a^2 )dx  =∫_0 ^a x^3 −x^ a^2   dx  =∣(x^4 /4)−(x^2 /2)×a^2 ∣_0 ^a   =(a^4 /4)−(a^4 /2)   taking the mod of value of area=(a^4 /4)  so dot shaded=(a^4 /8)  line shaded=(a^4 /8)  area line shaded  ∫_0 ^((√(a^2 +m)) ) mx dx+∫_((√(a^2 +m)) ) ^a x(x^2 −a^2 )dx  =∣((mx^2 )/2)∣_0 ^((√(a^2 +m)) )  +∣(x^4 /4)−((x^2 a^2 )/2)∣_((√(a^2 +m)) ) ^a   =((m(a^2 +m))/2)+{((a^4 /4)−(a^4 /2))−(((a^4 +2a^2 m+m^2 )/4)−((a^2 (a^2 +m))/2)}  =((a^2 m+m^2 )/2)+{(((−a^4 )/4))−(((a^4 +2a^2 m+m^2 −2a^4 −2a^2 m)/4))}   =((a^2 m+m^2 )/2)+{((−a^4 −a^4 −2a^2 m−m^2 +2a^4 +2a^2 m)/4)}  =((a^2 m+m^2 )/2)−(m^2 /4)  =((2a^2 m+2m^2 −m^2 )/4)  =((2a^2 m+m^2 )/4)  ((2a^2 m+m^2 )/4)=(a^4 /8)  4a^2 m+2m^2 −a^4 =0  2m^2 +4a^2 m−a^4 =0  m=((−4a^2 ±(√(16a^4 +8a^4 )) )/4)  =((−4a^2 ±2(√6) a^2 )/4)=((−2a^2 ±(√6) a^2 )/2)  as per figure m is negdtive  m=((−a^2 (2+(√6) ))/2)      pls check
solvingmx=x(x2a2)x{m(x2a2}=0x=0x2a2=mx=±a2+my=mxintersectthecurveat{a2+m,0,a2+m}thecurvey=x(x2a2)intersectxaxisat{a,0,a}nowareaofdotshaded+lineshaded=0ax(x2a2)dx=0ax3xa2dx=∣x44x22×a20a=a44a42takingthemodofvalueofarea=a44sodotshaded=a48lineshaded=a48arealineshaded0a2+mmxdx+a2+max(x2a2)dx=∣mx220a2+m+x44x2a22a2+ma=m(a2+m)2+{(a44a42)(a4+2a2m+m24a2(a2+m)2}=a2m+m22+{(a44)(a4+2a2m+m22a42a2m4)}=a2m+m22+{a4a42a2mm2+2a4+2a2m4}=a2m+m22m24=2a2m+2m2m24=2a2m+m242a2m+m24=a484a2m+2m2a4=02m2+4a2ma4=0m=4a2±16a4+8a44=4a2±26a24=2a2±6a22asperfiguremisnegdtivem=a2(2+6)2plscheck
Commented by ajfour last updated on 10/Sep/18
please check, some little error, Sir.
pleasecheck,somelittleerror,Sir.
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18
i have done  ∫_0 ^((√(a^2 +m)) ) mx+∫_((√(a^2 +m)) ) ^a x(x^2 −a^2 )dx to find the line shaded  area  sum of the value of this two intregal=(a^4 /8)    but you have done  ∫_0 ^((√(a^2 +m)) ) mx−x(x^2 −a^2 ) dx=(a^4 /8)  pls say which area belongs to this intregal
ihavedone0a2+mmx+a2+max(x2a2)dxtofindthelineshadedareasumofthevalueofthistwointregal=a48butyouhavedone0a2+mmxx(x2a2)dx=a48plssaywhichareabelongstothisintregal
Commented by ajfour last updated on 10/Sep/18
the dot shaded area is equal to  what i have integrated.
thedotshadedareaisequaltowhatihaveintegrated.
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18
i do not agree...∫_0 ^(√(a^2 +m)) mx dx is the area of triangle  formed by y=mx and x axis  and st line x=(√(a^2 +m))   ∫_0 ^((√(a^2 +m)) ) x(x^2 −a^2 ) dx  is the area formed by x axis and curve x(x^2 −a^2 ) and st  line x=(√(a^2 +m))[
idonotagree0a2+mmxdxistheareaoftriangleformedbyy=mxandxaxisandstlinex=a2+m0a2+mx(x2a2)dxistheareaformedbyxaxisandcurvex(x2a2)andstlinex=a2+m[
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18
pls find line shaded area...
plsfindlineshadedarea
Commented by ajfour last updated on 10/Sep/18
how will you find area of  (x−h)^2 +(y−k)^2 = r^2   , Sir ?
howwillyoufindareaof(xh)2+(yk)2=r2,Sir?
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18
you find error in my calculation...locate it
youfinderrorinmycalculationlocateit
Commented by ajfour last updated on 10/Sep/18
∫_0 ^(  (√(a^2 +m))) mxdx+∫_(√(a^2 +m)) ^(  a) x(x^2 −a^2 )dx=−(a^4 /8)  (area is below x-axis so −ve)  then you shall get     4a^2 m+2m^2 +a^4 =0  ⇒  2m^2 +4a^2 m+a^4 =0     m= ((−4a^2 ±(√(16a^4 −8a^4 )))/4)     or  m= (−1+(1/( (√2))))a^2       (not accepting the other root).
0a2+mmxdx+a2+max(x2a2)dx=a48(areaisbelowxaxissove)thenyoushallget4a2m+2m2+a4=02m2+4a2m+a4=0m=4a2±16a48a44orm=(1+12)a2(notacceptingtheotherroot).
Commented by tanmay.chaudhury50@gmail.com last updated on 11/Sep/18
ok thank you...
okthankyou
Answered by MJS last updated on 10/Sep/18
p: y=x^3 −a^2 x  l: y=mx  p∩l  x^3 −(m+a^2 )x=0 ⇒ x=(√(m+a^2 ))  dotted area: D=∫_0 ^(√(m+a^2 )) (x^3 −a^2 x)dx−m∫_0 ^(√(m+a^2 )) xdx  shaded area: S=m∫_0 ^(√(m+a^2 )) xdx+∫_( (√(m+a^2 ))) ^a (x^3 −a^2 x)dx  D=(1/4)(m^2 −a^4 )−(1/2)m(m+a^2 )=−(1/4)(m+a^2 )^2   S=(1/2)m(m+a^2 )−(1/4)m^2 =(1/4)m(m+2a^2 )  S−D=0  m^2 +2a^2 m+(a^4 /2)=0  m=(−1+((√2)/2))a^2      [the 2^(nd)  solution doesn′t                                         give a real value for (√(m+a^2 ))]
p:y=x3a2xl:y=mxplx3(m+a2)x=0x=m+a2dottedarea:D=m+a20(x3a2x)dxmm+a20xdxshadedarea:S=mm+a20xdx+am+a2(x3a2x)dxD=14(m2a4)12m(m+a2)=14(m+a2)2S=12m(m+a2)14m2=14m(m+2a2)SD=0m2+2a2m+a42=0m=(1+22)a2[the2ndsolutiondoesntgivearealvalueform+a2]

Leave a Reply

Your email address will not be published. Required fields are marked *