Menu Close

Question-43418




Question Number 43418 by Raj Singh last updated on 10/Sep/18
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18
∫((cosxdx)/(sinxcosx+1))  ∫((2cosx)/(2cosxsinx+2))dx  ∫((cosx+sinx+cosx−sinx)/(1+(sinx+cosx)^2 ))dx  ∫((cosx−sinx)/(1+(sinx+cosx)^2 ))dx+∫((cosx+sinx)/(2+2sinxcosx))dx  ∫((d(sinx+cosx))/(1+(sinx+cosx)))−∫(((cosx+sinx)dx)/(−3+1−2sinxcosx))  ∫((d(sinx+cosx))/(1+(sinx+cosx)^2 ))−∫((d(sinx−cosx))/(−3+(sinx−cosx)^2 ))  formula ∫(dx/(x^2 +a^2 ))=(1/a)tan^− ((x/a))  ∫(dx/(x^2 −b^2 ))  =(1/(2b))∫(((x+b)−(x−b))/((x+b)(x−b)))dx  =(1/(2b))[∫(dx/(x−b))−∫(dx/(x+b))]  =(1/(2b))ln∣((x−b)/(x+b))∣  so ans is  tan^(−1) (sinx+cosx)−(1/(2(√3) ))ln∣((sinx−cosx−(√3) )/(sinx−cosx+(√3)))∣+c
cosxdxsinxcosx+12cosx2cosxsinx+2dxcosx+sinx+cosxsinx1+(sinx+cosx)2dxcosxsinx1+(sinx+cosx)2dx+cosx+sinx2+2sinxcosxdxd(sinx+cosx)1+(sinx+cosx)(cosx+sinx)dx3+12sinxcosxd(sinx+cosx)1+(sinx+cosx)2d(sinxcosx)3+(sinxcosx)2formuladxx2+a2=1atan(xa)dxx2b2=12b(x+b)(xb)(x+b)(xb)dx=12b[dxxbdxx+b]=12blnxbx+bsoansistan1(sinx+cosx)123lnsinxcosx3sinxcosx+3+c

Leave a Reply

Your email address will not be published. Required fields are marked *